Abstract:Automatic Speech Recognition (ASR) systems struggle with child speech due to its distinct acoustic and linguistic variability and limited availability of child speech datasets, leading to high transcription error rates. While ASR error correction (AEC) methods have improved adult speech transcription, their effectiveness on child speech remains largely unexplored. To address this, we introduce CHSER, a Generative Speech Error Correction (GenSEC) dataset for child speech, comprising 200K hypothesis-transcription pairs spanning diverse age groups and speaking styles. Results demonstrate that fine-tuning on the CHSER dataset achieves up to a 28.5% relative WER reduction in a zero-shot setting and a 13.3% reduction when applied to fine-tuned ASR systems. Additionally, our error analysis reveals that while GenSEC improves substitution and deletion errors, it struggles with insertions and child-specific disfluencies. These findings highlight the potential of GenSEC for improving child ASR.
Abstract:While Speech Foundation Models (SFMs) excel in various speech tasks, their performance for low-resource tasks such as child Automatic Speech Recognition (ASR) is hampered by limited pretraining data. To address this, we explore different model merging techniques to leverage knowledge from models trained on larger, more diverse speech corpora. This paper also introduces Selective Attention (SA) Merge, a novel method that selectively merges task vectors from attention matrices to enhance SFM performance on low-resource tasks. Experiments on the MyST database show significant reductions in relative word error rate of up to 14%, outperforming existing model merging and data augmentation techniques. By combining data augmentation techniques with SA Merge, we achieve a new state-of-the-art WER of 8.69 on the MyST database for the Whisper-small model, highlighting the potential of SA Merge for improving low-resource ASR.