Abstract:While beam search improves speech recognition quality over greedy decoding, standard implementations are slow, often sequential, and CPU-bound. To fully leverage modern hardware capabilities, we present a novel open-source FlexCTC toolkit for fully GPU-based beam decoding, designed for Connectionist Temporal Classification (CTC) models. Developed entirely in Python and PyTorch, it offers a fast, user-friendly, and extensible alternative to traditional C++, CUDA, or WFST-based decoders. The toolkit features a high-performance, fully batched GPU implementation with eliminated CPU-GPU synchronization and minimized kernel launch overhead via CUDA Graphs. It also supports advanced contextualization techniques, including GPU-powered N-gram language model fusion and phrase-level boosting. These features enable accurate and efficient decoding, making them suitable for both research and production use.
Abstract:Recognizing specific key phrases is an essential task for contextualized Automatic Speech Recognition (ASR). However, most existing context-biasing approaches have limitations associated with the necessity of additional model training, significantly slow down the decoding process, or constrain the choice of the ASR system type. This paper proposes a universal ASR context-biasing framework that supports all major types: CTC, Transducers, and Attention Encoder-Decoder models. The framework is based on a GPU-accelerated word boosting tree, which enables it to be used in shallow fusion mode for greedy and beam search decoding without noticeable speed degradation, even with a vast number of key phrases (up to 20K items). The obtained results showed high efficiency of the proposed method, surpassing the considered open-source context-biasing approaches in accuracy and decoding speed. Our context-biasing framework is open-sourced as a part of the NeMo toolkit.
Abstract:We introduce SPGISpeech 2.0, a dataset suitable for speaker-tagged transcription in the financial domain. SPGISpeech 2.0 improves the diversity of applicable modeling tasks while maintaining the core characteristic of the original SPGISpeech dataset: audio snippets and their corresponding fully formatted text transcriptions, usable for end-to-end automatic speech recognition (ASR). SPGISpeech 2.0 consists of 3,780 additional hours of professionally transcribed earnings calls. Furthermore, the dataset contains call and speaker information for each audio snippet facilitating multi-talker ASR. We validate the utility of SPGISpeech 2.0 through improvements in speaker-tagged ASR performance of popular speech recognition models after fine-tuning on SPGISpeech 2.0. Released free for non-commercial use, we expect SPGISpeech 2.0 to foster advancements in speech recognition technologies and inspire a wide range of research applications.
Abstract:We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.
Abstract:Statistical n-gram language models are widely used for context-biasing tasks in Automatic Speech Recognition (ASR). However, existing implementations lack computational efficiency due to poor parallelization, making context-biasing less appealing for industrial use. This work rethinks data structures for statistical n-gram language models to enable fast and parallel operations for GPU-optimized inference. Our approach, named NGPU-LM, introduces customizable greedy decoding for all major ASR model types - including transducers, attention encoder-decoder models, and CTC - with less than 7% computational overhead. The proposed approach can eliminate more than 50% of the accuracy gap between greedy and beam search for out-of-domain scenarios while avoiding significant slowdown caused by beam search. The implementation of the proposed NGPU-LM is open-sourced.
Abstract:Post-processing is crucial for the automatic evaluation of LLMs in fill-in-the-middle (FIM) code generation due to the frequent presence of extraneous code in raw outputs. This extraneous generation suggests a lack of awareness regarding output boundaries, requiring truncation for effective evaluation. The determination of an optimal truncation strategy, however, often proves intricate, particularly when the scope includes several programming languages. This study investigates the necessity of post-processing instruction-tuned LLM outputs. Our findings reveal that supervised fine-tuning significantly enhances FIM code generation, enabling LLMs to generate code that seamlessly integrates with the surrounding context. Evaluating our fine-tuned \texttt{Qwen2.5-Coder} (base and instruct) models on HumanEval Infilling and SAFIM benchmarks demonstrates improved performances without post-processing, especially when the \emph{middle} consist of complete lines. However, post-processing of the LLM outputs remains necessary when the \emph{middle} is a random span of code.
Abstract:Spoken dialogue is an intuitive form of human-computer interaction, yet current speech language models often remain constrained to turn-based exchanges, lacking real-time adaptability such as user barge-in. We propose a novel duplex speech to speech (S2S) architecture featuring continuous user inputs and codec agent outputs with channel fusion that directly models simultaneous user and agent streams. Using a pretrained streaming encoder for user input enables the first duplex S2S model without requiring speech pretrain. Separate architectures for agent and user modeling facilitate codec fine-tuning for better agent voices and halve the bitrate (0.6 kbps) compared to previous works. Experimental results show that the proposed model outperforms previous duplex models in reasoning, turn-taking, and barge-in abilities. The model requires significantly less speech data, as speech pretrain is skipped, which markedly simplifies the process of building a duplex S2S model from any LLMs. Finally, it is the first openly available duplex S2S model with training and inference code to foster reproducibility.
Abstract:We introduce a data-driven approach for enabling word-level timestamp prediction in the Canary model. Accurate timestamp information is crucial for a variety of downstream tasks such as speech content retrieval and timed subtitles. While traditional hybrid systems and end-to-end (E2E) models may employ external modules for timestamp prediction, our approach eliminates the need for separate alignment mechanisms. By leveraging the NeMo Forced Aligner (NFA) as a teacher model, we generate word-level timestamps and train the Canary model to predict timestamps directly. We introduce a new <|timestamp|> token, enabling the Canary model to predict start and end timestamps for each word. Our method demonstrates precision and recall rates between 80% and 90%, with timestamp prediction errors ranging from 20 to 120 ms across four languages, with minimal WER degradation. Additionally, we extend our system to automatic speech translation (AST) tasks, achieving timestamp prediction errors around 200 milliseconds.
Abstract:We propose Windowed Inference for Non-blank Detection (WIND), a novel strategy that significantly accelerates RNN-T inference without compromising model accuracy. During model inference, instead of processing frames sequentially, WIND processes multiple frames simultaneously within a window in parallel, allowing the model to quickly locate non-blank predictions during decoding, resulting in significant speed-ups. We implement WIND for greedy decoding, batched greedy decoding with label-looping techniques, and also propose a novel beam-search decoding method. Experiments on multiple datasets with different conditions show that our method, when operating in greedy modes, speeds up as much as 2.4X compared to the baseline sequential approach while maintaining identical Word Error Rate (WER) performance. Our beam-search algorithm achieves slightly better accuracy than alternative methods, with significantly improved speed. We will open-source our WIND implementation.
Abstract:Multi-task and multilingual approaches benefit large models, yet speech processing for low-resource languages remains underexplored due to data scarcity. To address this, we present Granary, a large-scale collection of speech datasets for recognition and translation across 25 European languages. This is the first open-source effort at this scale for both transcription and translation. We enhance data quality using a pseudo-labeling pipeline with segmentation, two-pass inference, hallucination filtering, and punctuation restoration. We further generate translation pairs from pseudo-labeled transcriptions using EuroLLM, followed by a data filtration pipeline. Designed for efficiency, our pipeline processes vast amount of data within hours. We assess models trained on processed data by comparing their performance on previously curated datasets for both high- and low-resource languages. Our findings show that these models achieve similar performance using approx. 50% less data. Dataset will be made available at https://hf.co/datasets/nvidia/Granary