Abstract:Automatic speech recognition (ASR) for dysarthric speech remains challenging due to data scarcity, particularly in non-English languages. To address this, we fine-tune a voice conversion model on English dysarthric speech (UASpeech) to encode both speaker characteristics and prosodic distortions, then apply it to convert healthy non-English speech (FLEURS) into non-English dysarthric-like speech. The generated data is then used to fine-tune a multilingual ASR model, Massively Multilingual Speech (MMS), for improved dysarthric speech recognition. Evaluation on PC-GITA (Spanish), EasyCall (Italian), and SSNCE (Tamil) demonstrates that VC with both speaker and prosody conversion significantly outperforms the off-the-shelf MMS performance and conventional augmentation techniques such as speed and tempo perturbation. Objective and subjective analyses of the generated data further confirm that the generated speech simulates dysarthric characteristics.
Abstract:Many-shot in-context learning has recently shown promise as an alternative to finetuning, with the major advantage that the same model can be served for multiple tasks. However, this shifts the computational burden from training-time to inference-time, making deployment of many-shot ICL challenging to justify in-practice. This cost is further increased if a custom demonstration set is retrieved for each inference example. We present Dynamic Block-Sparse Attention, a training-free framework for retrieval-based many-shot in-context learning. By combining carefully designed block-sparse attention and retrieval of cached groups of demonstrations, we achieve comparable per-example latency to finetuning while maintaining on average >95% of the best method's accuracy across strong ICL and finetuning baselines. We hope that this will further enable the deployment of many-shot ICL at scale.
Abstract:Recent studies have increasingly acknowledged the advantages of incorporating visual data into speech enhancement (SE) systems. In this paper, we introduce a novel audio-visual SE approach, termed DCUC-Net (deep complex U-Net with conformer network). The proposed DCUC-Net leverages complex domain features and a stack of conformer blocks. The encoder and decoder of DCUC-Net are designed using a complex U-Net-based framework. The audio and visual signals are processed using a complex encoder and a ResNet-18 model, respectively. These processed signals are then fused using the conformer blocks and transformed into enhanced speech waveforms via a complex decoder. The conformer blocks consist of a combination of self-attention mechanisms and convolutional operations, enabling DCUC-Net to effectively capture both global and local audio-visual dependencies. Our experimental results demonstrate the effectiveness of DCUC-Net, as it outperforms the baseline model from the COG-MHEAR AVSE Challenge 2023 by a notable margin of 0.14 in terms of PESQ. Additionally, the proposed DCUC-Net performs comparably to a state-of-the-art model and outperforms all other compared models on the Taiwan Mandarin speech with video (TMSV) dataset.