Abstract:Transformers and their variants have achieved great success in speech processing. However, their multi-head self-attention mechanism is computationally expensive. Therefore, one novel selective state space model, Mamba, has been proposed as an alternative. Building on its success in automatic speech recognition, we apply Mamba for spoofing attack detection. Mamba is well-suited for this task as it can capture the artifacts in spoofed speech signals by handling long-length sequences. However, Mamba's performance may suffer when it is trained with limited labeled data. To mitigate this, we propose combining a new structure of Mamba based on a dual-column architecture with self-supervised learning, using the pre-trained wav2vec 2.0 model. The experiments show that our proposed approach achieves competitive results and faster inference on the ASVspoof 2021 LA and DF datasets, and on the more challenging In-the-Wild dataset, it emerges as the strongest candidate for spoofing attack detection. The code will be publicly released in due course.
Abstract:Sound Event Detection (SED) is challenging in noisy environments where overlapping sounds obscure target events. Language-queried audio source separation (LASS) aims to isolate the target sound events from a noisy clip. However, this approach can fail when the exact target sound is unknown, particularly in noisy test sets, leading to reduced performance. To address this issue, we leverage the capabilities of large language models (LLMs) to analyze and summarize acoustic data. By using LLMs to identify and select specific noise types, we implement a noise augmentation method for noise-robust fine-tuning. The fine-tuned model is applied to predict clip-wise event predictions as text queries for the LASS model. Our studies demonstrate that the proposed method improves SED performance in noisy environments. This work represents an early application of LLMs in noise-robust SED and suggests a promising direction for handling overlapping events in SED. Codes and pretrained models are available at https://github.com/apple-yinhan/Noise-robust-SED.
Abstract:Sound source localization (SSL) determines the position of sound sources using multi-channel audio data. It is commonly used to improve speech enhancement and separation. Extracting spatial features is crucial for SSL, especially in challenging acoustic environments. Previous studies performed well based on long short-term memory models. Recently, a novel scalable SSM referred to as Mamba demonstrated notable performance across various sequence-based modalities, including audio and speech. This study introduces the Mamba for SSL tasks. We consider the Mamba-based model to analyze spatial features from speech signals by fusing both time and frequency features, and we develop an SSL system called TF-Mamba. This system integrates time and frequency fusion, with Bidirectional Mamba managing both time-wise and frequency-wise processing. We conduct the experiments on the simulated dataset and the LOCATA dataset. Experiments show that TF-Mamba significantly outperforms other advanced methods on simulated and real-world data.
Abstract:This work explores domain generalization (DG) for sound event detection (SED), advancing adaptability towards real-world scenarios. Our approach employs a mean-teacher framework with domain generalization to integrate heterogeneous training data, while preserving the SED model performance across the datasets. Specifically, we first apply mixstyle to the frequency dimension to adapt the mel-spectrograms from different domains. Next, we use the adaptive residual normalization method to generalize features across multiple domains by applying instance normalization in the frequency dimension. Lastly, we use the sound event bounding boxes method for post-processing. Our approach integrates features from bidirectional encoder representations from audio transformers and a convolutional recurrent neural network. We evaluate the proposed approach on DCASE 2024 Challenge Task 4 dataset, measuring polyphonic SED score (PSDS) on the DESED dataset and macro-average pAUC on the MAESTRO dataset. The results indicate that the proposed DG-based method improves both PSDS and macro-average pAUC compared to the challenge baseline.
Abstract:This study introduces a progressive neural network (PNN) model for direction of arrival (DOA) estimation, DOA-PNN, addressing the challenge due to catastrophic forgetting in adapting dynamic acoustic environments. While traditional methods such as GCC, MUSIC, and SRP-PHAT are effective in static settings, they perform worse in noisy, reverberant conditions. Deep learning models, particularly CNNs, offer improvements but struggle with a mismatch configuration between the training and inference phases. The proposed DOA-PNN overcomes these limitations by incorporating task incremental learning of continual learning, allowing for adaptation across varying acoustic scenarios with less forgetting of previously learned knowledge. Featuring task-specific sub-networks and a scaling mechanism, DOA-PNN efficiently manages parameter growth, ensuring high performance across incremental microphone configurations. We study DOA-PNN on a simulated data under various mic distance based microphone settings. The studies reveal its capability to maintain performance with minimal parameter increase, presenting an efficient solution for DOA estimation.
Abstract:This work explores class-incremental learning (CIL) for sound event detection (SED), advancing adaptability towards real-world scenarios. CIL's success in domains like computer vision inspired our SED-tailored method, addressing the unique challenges of diverse and complex audio environments. Our approach employs an independent unsupervised learning framework with a distillation loss function to integrate new sound classes while preserving the SED model consistency across incremental tasks. We further enhance this framework with a sample selection strategy for unlabeled data and a balanced exemplar update mechanism, ensuring varied and illustrative sound representations. Evaluating various continual learning methods on the DCASE 2023 Task 4 dataset, we find that our research offers insights into each method's applicability for real-world SED systems that can have newly added sound classes. The findings also delineate future directions of CIL in dynamic audio settings.
Abstract:This work aims to advance sound event detection (SED) research by presenting a new large language model (LLM)-powered dataset namely wild domestic environment sound event detection (WildDESED). It is crafted as an extension to the original DESED dataset to reflect diverse acoustic variability and complex noises in home settings. We leveraged LLMs to generate eight different domestic scenarios based on target sound categories of the DESED dataset. Then we enriched the scenarios with a carefully tailored mixture of noises selected from AudioSet and ensured no overlap with target sound. We consider widely popular convolutional neural recurrent network to study WildDESED dataset, which depicts its challenging nature. We then apply curriculum learning by gradually increasing noise complexity to enhance the model's generalization capabilities across various noise levels. Our results with this approach show improvements within the noisy environment, validating the effectiveness on the WildDESED dataset promoting noise-robust SED advancements.
Abstract:This report presents the systems developed and submitted by Fortemedia Singapore (FMSG) and Joint Laboratory of Environmental Sound Sensing (JLESS) for DCASE 2024 Task 4. The task focuses on recognizing event classes and their time boundaries, given that multiple events can be present and may overlap in an audio recording. The novelty this year is a dataset with two sources, making it challenging to achieve good performance without knowing the source of the audio clips during evaluation. To address this, we propose a sound event detection method using domain generalization. Our approach integrates features from bidirectional encoder representations from audio transformers and a convolutional recurrent neural network. We focus on three main strategies to improve our method. First, we apply mixstyle to the frequency dimension to adapt the mel-spectrograms from different domains. Second, we consider training loss of our model specific to each datasets for their corresponding classes. This independent learning framework helps the model extract domain-specific features effectively. Lastly, we use the sound event bounding boxes method for post-processing. Our proposed method shows superior macro-average pAUC and polyphonic SED score performance on the DCASE 2024 Challenge Task 4 validation dataset and public evaluation dataset.
Abstract:Partially manipulating a sentence can greatly change its meaning. Recent work shows that countermeasures (CMs) trained on partially spoofed audio can effectively detect such spoofing. However, the current understanding of the decision-making process of CMs is limited. We utilize Grad-CAM and introduce a quantitative analysis metric to interpret CMs' decisions. We find that CMs prioritize the artifacts of transition regions created when concatenating bona fide and spoofed audio. This focus differs from that of CMs trained on fully spoofed audio, which concentrate on the pattern differences between bona fide and spoofed parts. Our further investigation explains the varying nature of CMs' focus while making correct or incorrect predictions. These insights provide a basis for the design of CM models and the creation of datasets. Moreover, this work lays a foundation of interpretability in the field of partial spoofed audio detection that has not been well explored previously.
Abstract:The most common spoofing attacks on automatic speaker verification systems are replay speech attacks. Detection of replay speech heavily relies on replay configuration information. Previous studies have shown that graph Fourier transform-derived features can effectively detect replay speech but ignore device and environmental noise effects. In this work, we propose a new feature, the graph frequency device cepstral coefficient, derived from the graph frequency domain using a device-related linear transformation. We also introduce two novel representations: graph frequency logarithmic coefficient and graph frequency logarithmic device coefficient. We evaluate our methods using traditional Gaussian mixture model and light convolutional neural network systems as classifiers. On the ASVspoof 2017 V2, ASVspoof 2019 physical access, and ASVspoof 2021 physical access datasets, our proposed features outperform known front-ends, demonstrating their effectiveness for replay speech detection.