Accurate individual identification is essential for monitoring rare amphibians, yet invasive marking is often unsuitable for critically endangered species. We evaluate state-of-the-art computer-vision methods for photographic re-identification of the Hula painted frog (Latonia nigriventer) using 1,233 ventral images from 191 individuals collected during 2013-2020 capture-recapture surveys. We compare deep local-feature matching in a zero-shot setting with deep global-feature embedding models. The local-feature pipeline achieves 98% top-1 closed-set identification accuracy, outperforming all global-feature models; fine-tuning improves the best global-feature model to 60% top-1 (91% top-10) but remains below local matching. To combine scalability with accuracy, we implement a two-stage workflow in which a fine-tuned global-feature model retrieves a short candidate list that is re-ranked by local-feature matching, reducing end-to-end runtime from 6.5-7.8 hours to ~38 minutes while maintaining ~96% top-1 closed-set accuracy on the labeled dataset. Separation of match scores between same- and different-individual pairs supports thresholding for open-set identification, enabling practical handling of novel individuals. We deploy this pipeline as a web application for routine field use, providing rapid, standardized, non-invasive identification to support conservation monitoring and capture-recapture analyses. Overall, in this species, zero-shot deep local-feature matching outperformed global-feature embedding and provides a strong default for photo-identification.
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
Synthetic Aperture Radar (SAR) provides robust all-weather imaging capabilities; however, translating SAR observations into photo-realistic optical images remains a fundamentally ill-posed problem. Current approaches are often hindered by the inherent speckle noise and geometric distortions of SAR data, which frequently result in semantic misinterpretation, ambiguous texture synthesis, and structural hallucinations. To address these limitations, a novel SAR-to-Optical (S2O) translation framework is proposed, integrating three core technical contributions: (i) Cross-Modal Semantic Alignment, which establishes an Optical-Aware SAR Encoder by distilling robust semantic priors from an Optical Teacher into a SAR Student (ii) Semantically-Grounded Generative Guidance, realized by a Semantically-Grounded ControlNet that integrates class-aware text prompts for global context with hierarchical visual prompts for local spatial guidance; and (iii) an Uncertainty-Aware Objective, which explicitly models aleatoric uncertainty to dynamically modulate the reconstruction focus, effectively mitigating artifacts caused by speckle-induced ambiguity. Extensive experiments demonstrate that the proposed method achieves superior perceptual quality and semantic consistency compared to state-of-the-art approaches.
Unified large multimodal models (LMMs) have achieved remarkable progress in general-purpose multimodal understanding and generation. However, they still operate under a ``one-size-fits-all'' paradigm and struggle to model user-specific concepts (e.g., generate a photo of \texttt{<maeve>}) in a consistent and controllable manner. Existing personalization methods typically rely on external retrieval, which is inefficient and poorly integrated into unified multimodal pipelines. Recent personalized unified models introduce learnable soft prompts to encode concept information, yet they either couple understanding and generation or depend on complex multi-stage training, leading to cross-task interference and ultimately to fuzzy or misaligned personalized knowledge. We present \textbf{OmniPersona}, an end-to-end personalization framework for unified LMMs that, for the first time, integrates personalized understanding, generation, and image editing within a single architecture. OmniPersona introduces structurally decoupled concept tokens, allocating dedicated subspaces for different tasks to minimize interference, and incorporates an explicit knowledge replay mechanism that propagates personalized attribute knowledge across tasks, enabling consistent personalized behavior. To systematically evaluate unified personalization, we propose \textbf{\texttt{OmniPBench}}, extending the public UnifyBench concept set with personalized editing tasks and cross-task evaluation protocols integrating understanding, generation, and editing. Experimental results demonstrate that OmniPersona delivers competitive and robust performance across diverse personalization tasks. We hope OmniPersona will serve as a strong baseline and spur further research on controllable, unified personalization.
Vision-Language Models (VLMs) are increasingly deployed in socially consequential settings, raising concerns about social bias driven by demographic cues. A central challenge in measuring such social bias is attribution under visual confounding: real-world images entangle race and gender with correlated factors such as background and clothing, obscuring attribution. We propose a \textbf{face-only counterfactual evaluation paradigm} that isolates demographic effects while preserving real-image realism. Starting from real photographs, we generate counterfactual variants by editing only facial attributes related to race and gender, keeping all other visual factors fixed. Based on this paradigm, we construct \textbf{FOCUS}, a dataset of 480 scene-matched counterfactual images across six occupations and ten demographic groups, and propose \textbf{REFLECT}, a benchmark comprising three decision-oriented tasks: two-alternative forced choice, multiple-choice socioeconomic inference, and numeric salary recommendation. Experiments on five state-of-the-art VLMs reveal that demographic disparities persist under strict visual control and vary substantially across task formulations. These findings underscore the necessity of controlled, counterfactual audits and highlight task design as a critical factor in evaluating social bias in multimodal models.
We present AutoTour, a system that enhances user exploration by automatically generating fine-grained landmark annotations and descriptive narratives for photos captured by users. The key idea of AutoTour is to fuse visual features extracted from photos with nearby geospatial features queried from open matching databases. Unlike existing tour applications that rely on pre-defined content or proprietary datasets, AutoTour leverages open and extensible data sources to provide scalable and context-aware photo-based guidance. To achieve this, we design a training-free pipeline that first extracts and filters relevant geospatial features around the user's GPS location. It then detects major landmarks in user photos through VLM-based feature detection and projects them into the horizontal spatial plane. A geometric matching algorithm aligns photo features with corresponding geospatial entities based on their estimated distance and direction. The matched features are subsequently grounded and annotated directly on the original photo, accompanied by large language model-generated textual and audio descriptions to provide an informative, tour-like experience. We demonstrate that AutoTour can deliver rich, interpretable annotations for both iconic and lesser-known landmarks, enabling a new form of interactive, context-aware exploration that bridges visual perception and geospatial understanding.
Personalized nutrition management aims to tailor dietary guidance to an individual's intake and phenotype, but most existing systems handle food logging, nutrient analysis and recommendation separately. We present a next-generation mobile nutrition assistant that combines image based meal logging with an LLM driven multi agent controller to provide meal level closed loop support. The system coordinates vision, dialogue and state management agents to estimate nutrients from photos and update a daily intake budget. It then adapts the next meal plan to user preferences and dietary constraints. Experiments with SNAPMe meal images and simulated users show competitive nutrient estimation, personalized menus and efficient task plans. These findings demonstrate the feasibility of multi agent LLM control for personalized nutrition and reveal open challenges in micronutrient estimation from images and in large scale real world studies.
Recent facial texture generation methods prefer to use deep networks to synthesize image content and then fill in the UV map, thus generating a compelling full texture from a single image. Nevertheless, the synthesized texture UV map usually comes from a space constructed by the training data or the 2D face generator, which limits the methods' generalization ability for in-the-wild input images. Consequently, their facial details, structures and identity may not be consistent with the input. In this paper, we address this issue by proposing a style transfer-based facial texture refinement method named FaceRefiner. FaceRefiner treats the 3D sampled texture as style and the output of a texture generation method as content. The photo-realistic style is then expected to be transferred from the style image to the content image. Different from current style transfer methods that only transfer high and middle level information to the result, our style transfer method integrates differentiable rendering to also transfer low level (or pixel level) information in the visible face regions. The main benefit of such multi-level information transfer is that, the details, structures and semantics in the input can thus be well preserved. The extensive experiments on Multi-PIE, CelebA and FFHQ datasets demonstrate that our refinement method can improve the texture quality and the face identity preserving ability, compared with state-of-the-arts.
Cinemagraphs, which combine static photographs with selective, looping motion, offer unique artistic appeal. Generating them from a single photograph in a controllable manner is particularly challenging. Existing image-animation techniques are restricted to simple, low-frequency motions and operate only in narrow domains with repetitive textures like water and smoke. In contrast, large-scale video diffusion models are not tailored for cinemagraph constraints and lack the specialized data required to generate seamless, controlled loops. We present DreamLoop, a controllable video synthesis framework dedicated to generating cinemagraphs from a single photo without requiring any cinemagraph training data. Our key idea is to adapt a general video diffusion model by training it on two objectives: temporal bridging and motion conditioning. This strategy enables flexible cinemagraph generation. During inference, by using the input image as both the first- and last- frame condition, we enforce a seamless loop. By conditioning on static tracks, we maintain a static background. Finally, by providing a user-specified motion path for a target object, our method provides intuitive control over the animation's trajectory and timing. To our knowledge, DreamLoop is the first method to enable cinemagraph generation for general scenes with flexible and intuitive controls. We demonstrate that our method produces high-quality, complex cinemagraphs that align with user intent, outperforming existing approaches.
Knowledge of the 6D pose of an object can benefit in-hand object manipulation. In-hand 6D object pose estimation is challenging because of heavy occlusion produced by the robot's grippers, which can have an adverse effect on methods that rely on vision data only. Many robots are equipped with tactile sensors at their fingertips that could be used to complement vision data. In this paper, we present a method that uses both tactile and vision data to estimate the pose of an object grasped in a robot's hand. To address challenges like lack of standard representation for tactile data and sensor fusion, we propose the use of point clouds to represent object surfaces in contact with the tactile sensor and present a network architecture based on pixel-wise dense fusion. We also extend NVIDIA's Deep Learning Dataset Synthesizer to produce synthetic photo-realistic vision data and corresponding tactile point clouds. Results suggest that using tactile data in addition to vision data improves the 6D pose estimate, and our network generalizes successfully from synthetic training to real physical robots.