



Abstract:We present FlexAvatar, a flexible large reconstruction model for high-fidelity 3D head avatars with detailed dynamic deformation from single or sparse images, without requiring camera poses or expression labels. It leverages a transformer-based reconstruction model with structured head query tokens as canonical anchor to aggregate flexible input-number-agnostic, camera-pose-free and expression-free inputs into a robust canonical 3D representation. For detailed dynamic deformation, we introduce a lightweight UNet decoder conditioned on UV-space position maps, which can produce detailed expression-dependent deformations in real time. To better capture rare but critical expressions like wrinkles and bared teeth, we also adopt a data distribution adjustment strategy during training to balance the distribution of these expressions in the training set. Moreover, a lightweight 10-second refinement can further enhances identity-specific details in extreme identities without affecting deformation quality. Extensive experiments demonstrate that our FlexAvatar achieves superior 3D consistency, detailed dynamic realism compared with previous methods, providing a practical solution for animatable 3D avatar creation.




Abstract:Navigating to a specified object in an unknown environment is a fundamental yet challenging capability of embodied intelligence. However, current methods struggle to balance decision frequency with intelligence, resulting in decisions lacking foresight or discontinuous actions. In this work, we propose PIGEON: Point of Interest Guided Exploration for Object Navigation with VLM, maintaining a lightweight and semantically aligned snapshot memory during exploration as semantic input for the exploration strategy. We use a large Visual-Language Model (VLM), named PIGEON-VL, to select Points of Interest (PoI) formed during exploration and then employ a lower-level planner for action output, increasing the decision frequency. Additionally, this PoI-based decision-making enables the generation of Reinforcement Learning with Verifiable Reward (RLVR) data suitable for simulators. Experiments on classic object navigation benchmarks demonstrate that our zero-shot transfer method achieves state-of-the-art performance, while RLVR further enhances the model's semantic guidance capabilities, enabling deep reasoning during real-time navigation.




Abstract:The surge in intelligent applications driven by large language models (LLMs) has made it increasingly difficult for bandwidth-limited cloud servers to process extensive LLM workloads in real time without compromising user data privacy. To solve these problems, recent research has focused on constructing cloud-edge consortia that integrate server-based LLM with small language models (SLMs) on mobile edge devices. Furthermore, designing collaborative training mechanisms within such consortia to enhance inference performance has emerged as a promising research direction. However, the cross-domain deployment of SLMs, coupled with structural heterogeneity in SLMs architectures, poses significant challenges to enhancing model performance. To this end, we propose Co-PLMs, a novel co-tuning framework for collaborative training of large and small language models, which integrates the process of structure-agnostic mutual learning to realize knowledge exchange between the heterogeneous language models. This framework employs distilled proxy models (DPMs) as bridges to enable collaborative training between the heterogeneous server-based LLM and on-device SLMs, while preserving the domain-specific insights of each device. The experimental results show that Co-PLMs outperform state-of-the-art methods, achieving average increases of 5.38% in Rouge-L and 4.88% in EM.
Abstract:The proliferation of collaborative robots across diverse tasks and embodiments presents a central challenge: achieving lifelong adaptability, scalable coordination, and robust scheduling in multi-agent systems. Existing approaches, from vision-language-action (VLA) models to hierarchical frameworks, fall short due to their reliance on limited or dividual-agent memory. This fundamentally constrains their ability to learn over long horizons, scale to heterogeneous teams, or recover from failures, highlighting the need for a unified memory representation. To address these limitations, we introduce RoboOS-NeXT, a unified memory-based framework for lifelong, scalable, and robust multi-robot collaboration. At the core of RoboOS-NeXT is the novel Spatio-Temporal-Embodiment Memory (STEM), which integrates spatial scene geometry, temporal event history, and embodiment profiles into a shared representation. This memory-centric design is integrated into a brain-cerebellum framework, where a high-level brain model performs global planning by retrieving and updating STEM, while low-level controllers execute actions locally. This closed loop between cognition, memory, and execution enables dynamic task allocation, fault-tolerant collaboration, and consistent state synchronization. We conduct extensive experiments spanning complex coordination tasks in restaurants, supermarkets, and households. Our results demonstrate that RoboOS-NeXT achieves superior performance across heterogeneous embodiments, validating its effectiveness in enabling lifelong, scalable, and robust multi-robot collaboration. Project website: https://flagopen.github.io/RoboOS/
Abstract:Implicit neural representations (INRs) have emerged as a compact and parametric alternative to discrete array-based data representations, encoding information directly in neural network weights to enable resolution-independent representation and memory efficiency. However, existing INR approaches, when constrained to compact network sizes, struggle to faithfully represent the multi-scale structures, high-frequency information, and fine textures that characterize the majority of scientific datasets. To address this limitation, we propose WIEN-INR, a wavelet-informed implicit neural representation that distributes modeling across different resolution scales and employs a specialized kernel network at the finest scale to recover subtle details. This multi-scale architecture allows for the use of smaller networks to retain the full spectrum of information while preserving the training efficiency and reducing storage cost. Through extensive experiments on diverse scientific datasets spanning different scales and structural complexities, WIEN-INR achieves superior reconstruction fidelity while maintaining a compact model size. These results demonstrate WIEN-INR as a practical neural representation framework for high-fidelity scientific data encoding, extending the applicability of INRs to domains where efficient preservation of fine detail is essential.




Abstract:In-the-wild photo collections often contain limited volumes of imagery and exhibit multiple appearances, e.g., taken at different times of day or seasons, posing significant challenges to scene reconstruction and novel view synthesis. Although recent adaptations of Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) have improved in these areas, they tend to oversmooth and are prone to overfitting. In this paper, we present MS-GS, a novel framework designed with Multi-appearance capabilities in Sparse-view scenarios using 3DGS. To address the lack of support due to sparse initializations, our approach is built on the geometric priors elicited from monocular depth estimations. The key lies in extracting and utilizing local semantic regions with a Structure-from-Motion (SfM) points anchored algorithm for reliable alignment and geometry cues. Then, to introduce multi-view constraints, we propose a series of geometry-guided supervision at virtual views in a fine-grained and coarse scheme to encourage 3D consistency and reduce overfitting. We also introduce a dataset and an in-the-wild experiment setting to set up more realistic benchmarks. We demonstrate that MS-GS achieves photorealistic renderings under various challenging sparse-view and multi-appearance conditions and outperforms existing approaches significantly across different datasets.




Abstract:Natural language processing (NLP) is a key technology to extract important patient information from clinical narratives to support healthcare applications. The rapid development of large language models (LLMs) has revolutionized many NLP tasks in the clinical domain, yet their optimal use in patient information extraction tasks requires further exploration. This study examines LLMs' effectiveness in patient information extraction, focusing on LLM architectures, fine-tuning strategies, and multi-task instruction tuning techniques for developing robust and generalizable patient information extraction systems. This study aims to explore key concepts of using LLMs for clinical concept and relation extraction tasks, including: (1) encoder-only or decoder-only LLMs, (2) prompt-based parameter-efficient fine-tuning (PEFT) algorithms, and (3) multi-task instruction tuning on few-shot learning performance. We benchmarked a suite of LLMs, including encoder-based LLMs (BERT, GatorTron) and decoder-based LLMs (GatorTronGPT, Llama 3.1, GatorTronLlama), across five datasets. We compared traditional full-size fine-tuning and prompt-based PEFT. We explored a multi-task instruction tuning framework that combines both tasks across four datasets to evaluate the zero-shot and few-shot learning performance using the leave-one-dataset-out strategy.
Abstract:Photorealistic and animatable human avatars are a key enabler for virtual/augmented reality, telepresence, and digital entertainment. While recent advances in 3D Gaussian Splatting (3DGS) have greatly improved rendering quality and efficiency, existing methods still face fundamental challenges, including time-consuming per-subject optimization and poor generalization under sparse monocular inputs. In this work, we present the Parametric Gaussian Human Model (PGHM), a generalizable and efficient framework that integrates human priors into 3DGS for fast and high-fidelity avatar reconstruction from monocular videos. PGHM introduces two core components: (1) a UV-aligned latent identity map that compactly encodes subject-specific geometry and appearance into a learnable feature tensor; and (2) a disentangled Multi-Head U-Net that predicts Gaussian attributes by decomposing static, pose-dependent, and view-dependent components via conditioned decoders. This design enables robust rendering quality under challenging poses and viewpoints, while allowing efficient subject adaptation without requiring multi-view capture or long optimization time. Experiments show that PGHM is significantly more efficient than optimization-from-scratch methods, requiring only approximately 20 minutes per subject to produce avatars with comparable visual quality, thereby demonstrating its practical applicability for real-world monocular avatar creation.
Abstract:Recent advances in model distillation demonstrate that data from advanced reasoning models (e.g., DeepSeek-R1, OpenAI's o1) can effectively transfer complex reasoning abilities to smaller, efficient student models. However, standard practices employ rejection sampling, discarding incorrect reasoning examples -- valuable, yet often underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? To this end, We propose Reinforcement Distillation (REDI), a two-stage framework. Stage 1 learns from positive traces via Supervised Fine-Tuning (SFT). Stage 2 further refines the model using both positive and negative traces through our proposed REDI objective. This novel objective is a simple, reference-free loss function that outperforms established methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate REDI's superiority over baseline Rejection Sampling SFT or SFT combined with DPO/SimPO on mathematical reasoning tasks. Notably, the Qwen-REDI-1.5B model, post-trained on just 131k positive and negative examples from the open Open-R1 dataset, achieves an 83.1% score on MATH-500 (pass@1). Its performance matches or surpasses that of DeepSeek-R1-Distill-Qwen-1.5B (a model post-trained on 800k proprietary data) across various mathematical reasoning benchmarks, establishing a new state-of-the-art for 1.5B models post-trained offline with openly available data.
Abstract:To advance biomedical vison-language model capabilities through scaling up, fine-tuning, and instruction tuning, develop vision-language models with improved performance in handling long text, explore strategies to efficiently adopt vision language models for diverse multi-modal biomedical tasks, and examine the zero-shot learning performance. We developed two biomedical vision language models, BiomedGPT-Large and BiomedGPT-XLarge, based on an encoder-decoder-based transformer architecture. We fine-tuned the two models on 23 benchmark datasets from 6 multi-modal biomedical tasks including one image-only task (image classification), three language-only tasks (text understanding, text summarization and question answering), and two vision-language tasks (visual question answering and image captioning). We compared the developed scaled models with our previous BiomedGPT-Base model and existing prestigious models reported in the literature. We instruction-tuned the two models using a large-scale multi-modal biomedical instruction-tuning dataset and assessed the zero-shot learning performance and alignment accuracy.