Abstract:Music recommender systems frequently utilize network-based models to capture relationships between music pieces, artists, and users. Although these relationships provide valuable insights for predictions, new music pieces or artists often face the cold-start problem due to insufficient initial information. To address this, one can extract content-based information directly from the music to enhance collaborative-filtering-based methods. While previous approaches have relied on hand-crafted audio features for this purpose, we explore the use of contrastively pretrained neural audio embedding models, which offer a richer and more nuanced representation of music. Our experiments demonstrate that neural embeddings, particularly those generated with the Contrastive Language-Audio Pretraining (CLAP) model, present a promising approach to enhancing music recommendation tasks within graph-based frameworks.
Abstract:Image datasets serve as the foundation for machine learning models in computer vision, significantly influencing model capabilities, performance, and biases alongside architectural considerations. Therefore, understanding the composition and distribution of these datasets has become increasingly crucial. To address the need for intuitive exploration of these datasets, we propose AEye, an extensible and scalable visualization tool tailored to image datasets. AEye utilizes a contrastively trained model to embed images into semantically meaningful high-dimensional representations, facilitating data clustering and organization. To visualize the high-dimensional representations, we project them onto a two-dimensional plane and arrange images in layers so users can seamlessly navigate and explore them interactively. AEye facilitates semantic search functionalities for both text and image queries, enabling users to search for content. We open-source the codebase for AEye, and provide a simple configuration to add datasets.
Abstract:Cue points indicate possible temporal boundaries in a transition between two pieces of music in DJ mixing and constitute a crucial element in autonomous DJ systems as well as for live mixing. In this work, we present a novel method for automatic cue point estimation, interpreted as a computer vision object detection task. Our proposed system is based on a pre-trained object detection transformer which we fine-tune on our novel cue point dataset. Our provided dataset contains 21k manually annotated cue points from human experts as well as metronome information for nearly 5k individual tracks, making this dataset 35x larger than the previously available cue point dataset. Unlike previous methods, our approach does not require low-level musical information analysis, while demonstrating increased precision in retrieving cue point positions. Moreover, our proposed method demonstrates high adherence to phrasing, a type of high-level music structure commonly emphasized in electronic dance music. The code, model checkpoints, and dataset are made publicly available.
Abstract:Algorithmic reasoning is a fundamental cognitive ability that plays a pivotal role in problem-solving and decision-making processes. Reinforcement Learning (RL) has demonstrated remarkable proficiency in tasks such as motor control, handling perceptual input, and managing stochastic environments. These advancements have been enabled in part by the availability of benchmarks. In this work we introduce PUZZLES, a benchmark based on Simon Tatham's Portable Puzzle Collection, aimed at fostering progress in algorithmic and logical reasoning in RL. PUZZLES contains 40 diverse logic puzzles of adjustable sizes and varying levels of complexity; many puzzles also feature a diverse set of additional configuration parameters. The 40 puzzles provide detailed information on the strengths and generalization capabilities of RL agents. Furthermore, we evaluate various RL algorithms on PUZZLES, providing baseline comparisons and demonstrating the potential for future research. All the software, including the environment, is available at https://github.com/ETH-DISCO/rlp.
Abstract:Reinforcement learning (RL) has gained popularity in the realm of recommender systems due to its ability to optimize long-term rewards and guide users in discovering relevant content. However, the successful implementation of RL in recommender systems is challenging because of several factors, including the limited availability of online data for training on-policy methods. This scarcity requires expensive human interaction for online model training. Furthermore, the development of effective evaluation frameworks that accurately reflect the quality of models remains a fundamental challenge in recommender systems. To address these challenges, we propose a comprehensive framework for synthetic environments that simulate human behavior by harnessing the capabilities of large language models (LLMs). We complement our framework with in-depth ablation studies and demonstrate its effectiveness with experiments on movie and book recommendations. By utilizing LLMs as synthetic users, this work introduces a modular and novel framework for training RL-based recommender systems. The software, including the RL environment, is publicly available.
Abstract:In this study, we delve into Federated Reinforcement Learning (FedRL) in the context of value-based agents operating across diverse Markov Decision Processes (MDPs). Existing FedRL methods typically aggregate agents' learning by averaging the value functions across them to improve their performance. However, this aggregation strategy is suboptimal in heterogeneous environments where agents converge to diverse optimal value functions. To address this problem, we introduce the Convergence-AwarE SAmpling with scReening (CAESAR) aggregation scheme designed to enhance the learning of individual agents across varied MDPs. CAESAR is an aggregation strategy used by the server that combines convergence-aware sampling with a screening mechanism. By exploiting the fact that agents learning in identical MDPs are converging to the same optimal value function, CAESAR enables the selective assimilation of knowledge from more proficient counterparts, thereby significantly enhancing the overall learning efficiency. We empirically validate our hypothesis and demonstrate the effectiveness of CAESAR in enhancing the learning efficiency of agents, using both a custom-built GridWorld environment and the classical FrozenLake-v1 task, each presenting varying levels of environmental heterogeneity.
Abstract:Music datasets play a crucial role in advancing research in machine learning for music. However, existing music datasets suffer from limited size, accessibility, and lack of audio resources. To address these shortcomings, we present DISCO-10M, a novel and extensive music dataset that surpasses the largest previously available music dataset by an order of magnitude. To ensure high-quality data, we implement a multi-stage filtering process. This process incorporates similarities based on textual descriptions and audio embeddings. Moreover, we provide precomputed CLAP embeddings alongside DISCO-10M, facilitating direct application on various downstream tasks. These embeddings enable efficient exploration of machine learning applications on the provided data. With DISCO-10M, we aim to democratize and facilitate new research to help advance the development of novel machine learning models for music.
Abstract:Implicit Neural Representations (INRs) have emerged as a promising method for representing diverse data modalities, including 3D shapes, images, and audio. While recent research has demonstrated successful applications of INRs in image and 3D shape compression, their potential for audio compression remains largely unexplored. Motivated by this, we present a preliminary investigation into the use of INRs for audio compression. Our study introduces Siamese SIREN, a novel approach based on the popular SIREN architecture. Our experimental results indicate that Siamese SIREN achieves superior audio reconstruction fidelity while utilizing fewer network parameters compared to previous INR architectures.
Abstract:We conduct a preliminary inquiry into the ability of generative transformer models to deductively reason from premises provided. We observe notable differences in the performance of models coming from different training setups and find that the deductive reasoning ability increases with scale. Further, we discover that the performance generally does not decrease with the length of the deductive chain needed to reach the conclusion, with the exception of OpenAI GPT-3 and GPT-3.5 models. Our study considers a wide variety of transformer-decoder models, ranging from 117 million to 175 billion parameters in size.