Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
May 09, 2025
Abstract:This project performs multimodal sentiment analysis using the CMU-MOSEI dataset, using transformer-based models with early fusion to integrate text, audio, and visual modalities. We employ BERT-based encoders for each modality, extracting embeddings that are concatenated before classification. The model achieves strong performance, with 97.87\% 7-class accuracy and a 0.9682 F1-score on the test set, demonstrating the effectiveness of early fusion in capturing cross-modal interactions. The training utilized Adam optimization (lr=1e-4), dropout (0.3), and early stopping to ensure generalization and robustness. Results highlight the superiority of transformer architectures in modeling multimodal sentiment, with a low MAE (0.1060) indicating precise sentiment intensity prediction. Future work may compare fusion strategies or enhance interpretability. This approach utilizes multimodal learning by effectively combining linguistic, acoustic, and visual cues for sentiment analysis.
* 6 pages, 2 figures, 5 tables, and 19 references
Via

May 16, 2025
Abstract:Recent advances in vision language models (VLMs) have enabled broad progress in the general medical field. However, pathology still remains a more challenging subdomain, with current pathology specific VLMs exhibiting limitations in both diagnostic accuracy and reasoning plausibility. Such shortcomings are largely attributable to the nature of current pathology datasets, which are primarily composed of image description pairs that lack the depth and structured diagnostic paradigms employed by real world pathologists. In this study, we leverage pathology textbooks and real world pathology experts to construct high-quality, reasoning-oriented datasets. Building on this, we introduce Patho-R1, a multimodal RL-based pathology Reasoner, trained through a three-stage pipeline: (1) continued pretraining on 3.5 million image-text pairs for knowledge infusion; (2) supervised fine-tuning on 500k high-quality Chain-of-Thought samples for reasoning incentivizing; (3) reinforcement learning using Group Relative Policy Optimization and Decoupled Clip and Dynamic sAmpling Policy Optimization strategies for multimodal reasoning quality refinement. To further assess the alignment quality of our dataset, we propose PathoCLIP, trained on the same figure-caption corpus used for continued pretraining. Comprehensive experimental results demonstrate that both PathoCLIP and Patho-R1 achieve robust performance across a wide range of pathology-related tasks, including zero-shot classification, cross-modal retrieval, Visual Question Answering, and Multiple Choice Question. Our project is available at the Patho-R1 repository: https://github.com/Wenchuan-Zhang/Patho-R1.
Via

May 13, 2025
Abstract:Electronic Health Records (EHRs) are digital records of patient information, often containing unstructured clinical text. Named Entity Recognition (NER) is essential in EHRs for extracting key medical entities like problems, tests, and treatments to support downstream clinical applications. This paper explores prompt-based medical entity recognition using large language models (LLMs), specifically GPT-4o and DeepSeek-R1, guided by various prompt engineering techniques, including zero-shot, few-shot, and an ensemble approach. Among all strategies, GPT-4o with prompt ensemble achieved the highest classification performance with an F1-score of 0.95 and recall of 0.98, outperforming DeepSeek-R1 on the task. The ensemble method improved reliability by aggregating outputs through embedding-based similarity and majority voting.
* IEEE 26th International Conference on Information Reuse and
Integration for Data Science (IRI 2025), San Jose, CA, USA
Via

May 05, 2025
Abstract:Multimodal sentiment analysis, a pivotal task in affective computing, seeks to understand human emotions by integrating cues from language, audio, and visual signals. While many recent approaches leverage complex attention mechanisms and hierarchical architectures, we propose a lightweight, yet effective fusion-based deep learning model tailored for utterance-level emotion classification. Using the benchmark IEMOCAP dataset, which includes aligned text, audio-derived numeric features, and visual descriptors, we design a modality-specific encoder using fully connected layers followed by dropout regularization. The modality-specific representations are then fused using simple concatenation and passed through a dense fusion layer to capture cross-modal interactions. This streamlined architecture avoids computational overhead while preserving performance, achieving a classification accuracy of 92% across six emotion categories. Our approach demonstrates that with careful feature engineering and modular design, simpler fusion strategies can outperform or match more complex models, particularly in resource-constrained environments.
Via

May 08, 2025
Abstract:Prompt learning is one of the most effective paradigms for adapting pre-trained vision-language models (VLMs) to the biomedical image classification tasks in few shot scenarios. However, most of the current prompt learning methods only used the text prompts and ignored the particular structures (such as the complex anatomical structures and subtle pathological features) in the biomedical images. In this work, we propose Biomed-DPT, a knowledge-enhanced dual modality prompt tuning technique. In designing the text prompt, Biomed-DPT constructs a dual prompt including the template-driven clinical prompts and the large language model (LLM)-driven domain-adapted prompts, then extracts the clinical knowledge from the domain-adapted prompts through the knowledge distillation technique. In designing the vision prompt, Biomed-DPT introduces the zero vector as a soft prompt to leverage attention re-weighting so that the focus on non-diagnostic regions and the recognition of non-critical pathological features are avoided. Biomed-DPT achieves an average classification accuracy of 66.14\% across 11 biomedical image datasets covering 9 modalities and 10 organs, with performance reaching 78.06\% in base classes and 75.97\% in novel classes, surpassing the Context Optimization (CoOp) method by 6.20\%, 3.78\%, and 8.04\%, respectively. Our code are available at \underline{https://github.com/Kanyooo/Biomed-DPT}.
Via

May 10, 2025
Abstract:Open-vocabulary video visual relationship detection aims to detect objects and their relationships in videos without being restricted by predefined object or relationship categories. Existing methods leverage the rich semantic knowledge of pre-trained vision-language models such as CLIP to identify novel categories. They typically adopt a cascaded pipeline to first detect objects and then classify relationships based on the detected objects, which may lead to error propagation and thus suboptimal performance. In this paper, we propose Mutual EnhancemenT of Objects and Relationships (METOR), a query-based unified framework to jointly model and mutually enhance object detection and relationship classification in open-vocabulary scenarios. Under this framework, we first design a CLIP-based contextual refinement encoding module that extracts visual contexts of objects and relationships to refine the encoding of text features and object queries, thus improving the generalization of encoding to novel categories. Then we propose an iterative enhancement module to alternatively enhance the representations of objects and relationships by fully exploiting their interdependence to improve recognition performance. Extensive experiments on two public datasets, VidVRD and VidOR, demonstrate that our framework achieves state-of-the-art performance.
* IJCAI2025
Via

May 10, 2025
Abstract:Multi-domain sentiment classification aims to mitigate poor performance models due to the scarcity of labeled data in a single domain, by utilizing data labeled from various domains. A series of models that jointly train domain classifiers and sentiment classifiers have demonstrated their advantages, because domain classification helps generate necessary information for sentiment classification. Intuitively, the importance of sentiment classification tasks is the same in all domains for multi-domain sentiment classification; but domain classification tasks are different because the impact of domain information on sentiment classification varies across different fields; this can be controlled through adjustable weights or hyper parameters. However, as the number of domains increases, existing hyperparameter optimization algorithms may face the following challenges: (1) tremendous demand for computing resources, (2) convergence problems, and (3) high algorithm complexity. To efficiently generate the domain information required for sentiment classification in each domain, we propose a dynamic information modulation algorithm. Specifically, the model training process is divided into two stages. In the first stage, a shared hyperparameter, which would control the proportion of domain classification tasks across all fields, is determined. In the second stage, we introduce a novel domain-aware modulation algorithm to adjust the domain information contained in the input text, which is then calculated based on a gradient-based and loss-based method. In summary, experimental results on a public sentiment analysis dataset containing 16 domains prove the superiority of the proposed method.
* 17 pages, 5 figures, 3 tables
Via

May 14, 2025
Abstract:Pre-training on image-text colonoscopy records offers substantial potential for improving endoscopic image analysis, but faces challenges including non-informative background images, complex medical terminology, and ambiguous multi-lesion descriptions. We introduce Endo-CLIP, a novel self-supervised framework that enhances Contrastive Language-Image Pre-training (CLIP) for this domain. Endo-CLIP's three-stage framework--cleansing, attunement, and unification--addresses these challenges by (1) removing background frames, (2) leveraging large language models to extract clinical attributes for fine-grained contrastive learning, and (3) employing patient-level cross-attention to resolve multi-polyp ambiguities. Extensive experiments demonstrate that Endo-CLIP significantly outperforms state-of-the-art pre-training methods in zero-shot and few-shot polyp detection and classification, paving the way for more accurate and clinically relevant endoscopic analysis.
* Early accepted to MICCAI 2025
Via

May 12, 2025
Abstract:Large vision language models (LVLMs) achieve remarkable performance through Vision In-context Learning (VICL), a process that depends significantly on demonstrations retrieved from an extensive collection of annotated examples (retrieval database). Existing studies often assume that the retrieval database contains annotated examples for all labels. However, in real-world scenarios, delays in database updates or incomplete data annotation may result in the retrieval database containing labeled samples for only a subset of classes. We refer to this phenomenon as an \textbf{incomplete retrieval database} and define the in-context learning under this condition as \textbf{Incomplete In-context Learning (IICL)}. To address this challenge, we propose \textbf{Iterative Judgments and Integrated Prediction (IJIP)}, a two-stage framework designed to mitigate the limitations of IICL. The Iterative Judgments Stage reformulates an \(\boldsymbol{m}\)-class classification problem into a series of \(\boldsymbol{m}\) binary classification tasks, effectively converting the IICL setting into a standard VICL scenario. The Integrated Prediction Stage further refines the classification process by leveraging both the input image and the predictions from the Iterative Judgments Stage to enhance overall classification accuracy. IJIP demonstrates considerable performance across two LVLMs and two datasets under three distinct conditions of label incompleteness, achieving the highest accuracy of 93.9\%. Notably, even in scenarios where labels are fully available, IJIP still achieves the best performance of all six baselines. Furthermore, IJIP can be directly applied to \textbf{Prompt Learning} and is adaptable to the \textbf{text domain}.
Via

May 12, 2025
Abstract:In this work, we enable gamers to share their gaming experience on social media by automatically generating eye-catching highlight reels from their gameplay session Our automation will save time for gamers while increasing audience engagement. We approach the highlight generation problem by first identifying intervals in the video where interesting events occur and then concatenate them. We developed an in-house gameplay event detection dataset containing interesting events annotated by humans using VIA video annotator. Traditional techniques for highlight detection such as game engine integration requires expensive collaboration with game developers. OCR techniques which detect patches of specific images or texts require expensive per game engineering and may not generalize across game UI and different language. We finetuned a multimodal general purpose video understanding model such as X-CLIP using our dataset which generalizes across multiple games in a genre without per game engineering. Prompt engineering was performed to improve the classification performance of this multimodal model. Our evaluation showed that such a finetuned model can detect interesting events in first person shooting games from unseen gameplay footage with more than 90% accuracy. Moreover, our model performed significantly better on low resource games (small dataset) when trained along with high resource games, showing signs of transfer learning. To make the model production ready, we used ONNX libraries to enable cross platform inference. These libraries also provide post training quantization tools to reduce model size and inference time for deployment. ONNX runtime libraries with DirectML backend were used to perform efficient inference on Windows OS. We show that natural language supervision in the X-CLIP model leads to data efficient and highly performant video recognition models.
Via
