Abstract:Adapting Large Language Models (LLMs) to specialized domains without human-annotated data is a crucial yet formidable challenge. Widely adopted knowledge distillation methods often devolve into coarse-grained mimicry, where the student model inefficiently targets its own weaknesses and risks inheriting the teacher's reasoning flaws. This exposes a critical pedagogical dilemma: how to devise a reliable curriculum when the teacher itself is not an infallible expert. Our work resolves this by capitalizing on a key insight: while LLMs may exhibit fallibility in complex, holistic reasoning, they often exhibit high fidelity on focused, atomic sub-problems. Based on this, we propose Divergence-Guided Reasoning Curriculum (DGRC), which constructs a learning path from atomic knowledge to reasoning chains by dynamically deriving two complementary curricula from disagreements in reasoning pathways. When a student and teacher produce conflicting results, DGRC directs the teacher to perform a diagnostic analysis: it analyzes both reasoning paths to formulate atomic queries that target the specific points of divergence, and then self-answers these queries to create high-confidence atomic question-answer pairs. These pairs then serve a dual purpose: (1) providing an atomic curriculum to rectify the student's knowledge gaps, and (2) serving as factual criteria to filter the teacher's original reasoning chains, yielding a verified CoT curriculum that teaches the student how to integrate atomic knowledge into complete reasoning paths. Experiments across the medical and legal domains on student models of various sizes demonstrate the effectiveness of our DGRC framework. Notably, our method achieves a 7.76% relative improvement for the 1.5B student model in the medical domain over strong unlabeled baseline.
Abstract:Video understanding has made remarkable progress in recent years, largely driven by advances in deep models and the availability of large-scale annotated datasets. However, existing works typically ignore the inherent domain shifts encountered in real-world video applications, leaving domain generalization (DG) in video understanding underexplored. Hence, we propose Video Understanding Domain Generalization (VUDG), a novel dataset designed specifically for evaluating the DG performance in video understanding. VUDG contains videos from 11 distinct domains that cover three types of domain shifts, and maintains semantic similarity across different domains to ensure fair and meaningful evaluation. We propose a multi-expert progressive annotation framework to annotate each video with both multiple-choice and open-ended question-answer pairs. Extensive experiments on 9 representative large video-language models (LVLMs) and several traditional video question answering methods show that most models (including state-of-the-art LVLMs) suffer performance degradation under domain shifts. These results highlight the challenges posed by VUDG and the difference in the robustness of current models to data distribution shifts. We believe VUDG provides a valuable resource for prompting future research in domain generalization video understanding.
Abstract:Language-driven action localization in videos requires not only semantic alignment between language query and video segment, but also prediction of action boundaries. However, the language query primarily describes the main content of an action and usually lacks specific details of action start and end boundaries, which increases the subjectivity of manual boundary annotation and leads to boundary uncertainty in training data. In this paper, on one hand, we propose to expand the original query by generating textual descriptions of the action start and end boundaries through LLMs, which can provide more detailed boundary cues for localization and thus reduce the impact of boundary uncertainty. On the other hand, to enhance the tolerance to boundary uncertainty during training, we propose to model probability scores of action boundaries by calculating the semantic similarities between frames and the expanded query as well as the temporal distances between frames and the annotated boundary frames. They can provide more consistent boundary supervision, thus improving the stability of training. Our method is model-agnostic and can be seamlessly and easily integrated into any existing models of language-driven action localization in an off-the-shelf manner. Experimental results on several datasets demonstrate the effectiveness of our method.
Abstract:Open-vocabulary video visual relationship detection aims to detect objects and their relationships in videos without being restricted by predefined object or relationship categories. Existing methods leverage the rich semantic knowledge of pre-trained vision-language models such as CLIP to identify novel categories. They typically adopt a cascaded pipeline to first detect objects and then classify relationships based on the detected objects, which may lead to error propagation and thus suboptimal performance. In this paper, we propose Mutual EnhancemenT of Objects and Relationships (METOR), a query-based unified framework to jointly model and mutually enhance object detection and relationship classification in open-vocabulary scenarios. Under this framework, we first design a CLIP-based contextual refinement encoding module that extracts visual contexts of objects and relationships to refine the encoding of text features and object queries, thus improving the generalization of encoding to novel categories. Then we propose an iterative enhancement module to alternatively enhance the representations of objects and relationships by fully exploiting their interdependence to improve recognition performance. Extensive experiments on two public datasets, VidVRD and VidOR, demonstrate that our framework achieves state-of-the-art performance.
Abstract:Building Graphical User Interface (GUI) agents is a promising research direction, which simulates human interaction with computers or mobile phones to perform diverse GUI tasks. However, a major challenge in developing generalized GUI agents is the lack of sufficient trajectory data across various operating systems and applications, mainly due to the high cost of manual annotations. In this paper, we propose the TongUI framework that builds generalized GUI agents by learning from rich multimodal web tutorials. Concretely, we crawl and process online GUI tutorials (such as videos and articles) into GUI agent trajectory data, through which we produce the GUI-Net dataset containing 143K trajectory data across five operating systems and more than 200 applications. We develop the TongUI agent by fine-tuning Qwen2.5-VL-3B/7B models on GUI-Net, which show remarkable performance improvements on commonly used grounding and navigation benchmarks, outperforming baseline agents about 10\% on multiple benchmarks, showing the effectiveness of the GUI-Net dataset and underscoring the significance of our TongUI framework. We will fully open-source the code, the GUI-Net dataset, and the trained models soon.




Abstract:Video summarization aims to eliminate visual redundancy while retaining key parts of video to construct concise and comprehensive synopses. Most existing methods use discriminative models to predict the importance scores of video frames. However, these methods are susceptible to annotation inconsistency caused by the inherent subjectivity of different annotators when annotating the same video. In this paper, we introduce a generative framework for video summarization that learns how to generate summaries from a probability distribution perspective, effectively reducing the interference of subjective annotation noise. Specifically, we propose a novel diffusion summarization method based on the Denoising Diffusion Probabilistic Model (DDPM), which learns the probability distribution of training data through noise prediction, and generates summaries by iterative denoising. Our method is more resistant to subjective annotation noise, and is less prone to overfitting the training data than discriminative methods, with strong generalization ability. Moreover, to facilitate training DDPM with limited data, we employ an unsupervised video summarization model to implement the earlier denoising process. Extensive experiments on various datasets (TVSum, SumMe, and FPVSum) demonstrate the effectiveness of our method.




Abstract:The exploration of various vision-language tasks, such as visual captioning, visual question answering, and visual commonsense reasoning, is an important area in artificial intelligence and continuously attracts the research community's attention. Despite the improvements in overall performance, classic challenges still exist in vision-language tasks and hinder the development of this area. In recent years, the rise of pre-trained models is driving the research on vision-language tasks. Thanks to the massive scale of training data and model parameters, pre-trained models have exhibited excellent performance in numerous downstream tasks. Inspired by the powerful capabilities of pre-trained models, new paradigms have emerged to solve the classic challenges. Such methods have become mainstream in current research with increasing attention and rapid advances. In this paper, we present a comprehensive overview of how vision-language tasks benefit from pre-trained models. First, we review several main challenges in vision-language tasks and discuss the limitations of previous solutions before the era of pre-training. Next, we summarize the recent advances in incorporating pre-trained models to address the challenges in vision-language tasks. Finally, we analyze the potential risks associated with the inherent limitations of pre-trained models and discuss possible solutions, attempting to provide future research directions.
Abstract:Fine-grained video action recognition can be conceptualized as a video-text matching problem. Previous approaches often rely on global video semantics to consolidate video embeddings, which can lead to misalignment in video-text pairs due to a lack of understanding of action semantics at an atomic granularity level. To tackle this challenge, we propose a multi-granularity framework based on two observations: (i) videos with different global semantics may share similar atomic actions or appearances, and (ii) atomic actions within a video can be momentary, slow, or even non-directly related to the global video semantics. Inspired by the concept of storyboarding, which disassembles a script into individual shots, we enhance global video semantics by generating fine-grained descriptions using a pre-trained large language model. These detailed descriptions capture common atomic actions depicted in videos. A filtering metric is proposed to select the descriptions that correspond to the atomic actions present in both the videos and the descriptions. By employing global semantics and fine-grained descriptions, we can identify key frames in videos and utilize them to aggregate embeddings, thereby making the embedding more accurate. Extensive experiments on various video action recognition datasets demonstrate superior performance of our proposed method in supervised, few-shot, and zero-shot settings.
Abstract:This paper proposes a novel framework for multi-label image recognition without any training data, called data-free framework, which uses knowledge of pre-trained Large Language Model (LLM) to learn prompts to adapt pretrained Vision-Language Model (VLM) like CLIP to multilabel classification. Through asking LLM by well-designed questions, we acquire comprehensive knowledge about characteristics and contexts of objects, which provides valuable text descriptions for learning prompts. Then we propose a hierarchical prompt learning method by taking the multi-label dependency into consideration, wherein a subset of category-specific prompt tokens are shared when the corresponding objects exhibit similar attributes or are more likely to co-occur. Benefiting from the remarkable alignment between visual and linguistic semantics of CLIP, the hierarchical prompts learned from text descriptions are applied to perform classification of images during inference. Our framework presents a new way to explore the synergies between multiple pre-trained models for novel category recognition. Extensive experiments on three public datasets (MS-COCO, VOC2007, and NUS-WIDE) demonstrate that our method achieves better results than the state-of-the-art methods, especially outperforming the zero-shot multi-label recognition methods by 4.7% in mAP on MS-COCO.




Abstract:Large pre-trained models have had a significant impact on computer vision by enabling multi-modal learning, where the CLIP model has achieved impressive results in image classification, object detection, and semantic segmentation. However, the model's performance on 3D point cloud processing tasks is limited due to the domain gap between depth maps from 3D projection and training images of CLIP. This paper proposes DiffCLIP, a new pre-training framework that incorporates stable diffusion with ControlNet to minimize the domain gap in the visual branch. Additionally, a style-prompt generation module is introduced for few-shot tasks in the textual branch. Extensive experiments on the ModelNet10, ModelNet40, and ScanObjectNN datasets show that DiffCLIP has strong abilities for 3D understanding. By using stable diffusion and style-prompt generation, DiffCLIP achieves an accuracy of 43.2\% for zero-shot classification on OBJ\_BG of ScanObjectNN, which is state-of-the-art performance, and an accuracy of 80.6\% for zero-shot classification on ModelNet10, which is comparable to state-of-the-art performance.