Abstract:Knowledge graphs have emerged as fundamental structures for representing complex relational data across scientific and enterprise domains. However, existing embedding methods face critical limitations when modeling diverse relationship types at scale: Euclidean models struggle with hierarchies, vector space models cannot capture asymmetry, and hyperbolic models fail on symmetric relations. We propose HyperComplEx, a hybrid embedding framework that adaptively combines hyperbolic, complex, and Euclidean spaces via learned attention mechanisms. A relation-specific space weighting strategy dynamically selects optimal geometries for each relation type, while a multi-space consistency loss ensures coherent predictions across spaces. We evaluate HyperComplEx on computer science research knowledge graphs ranging from 1K papers (~25K triples) to 10M papers (~45M triples), demonstrating consistent improvements over state-of-the-art baselines including TransE, RotatE, DistMult, ComplEx, SEPA, and UltraE. Additional tests on standard benchmarks confirm significantly higher results than all baselines. On the 10M-paper dataset, HyperComplEx achieves 0.612 MRR, a 4.8% relative gain over the best baseline, while maintaining efficient training, achieving 85 ms inference per triple. The model scales near-linearly with graph size through adaptive dimension allocation. We release our implementation and dataset family to facilitate reproducible research in scalable knowledge graph embeddings.
Abstract:This project performs multimodal sentiment analysis using the CMU-MOSEI dataset, using transformer-based models with early fusion to integrate text, audio, and visual modalities. We employ BERT-based encoders for each modality, extracting embeddings that are concatenated before classification. The model achieves strong performance, with 97.87\% 7-class accuracy and a 0.9682 F1-score on the test set, demonstrating the effectiveness of early fusion in capturing cross-modal interactions. The training utilized Adam optimization (lr=1e-4), dropout (0.3), and early stopping to ensure generalization and robustness. Results highlight the superiority of transformer architectures in modeling multimodal sentiment, with a low MAE (0.1060) indicating precise sentiment intensity prediction. Future work may compare fusion strategies or enhance interpretability. This approach utilizes multimodal learning by effectively combining linguistic, acoustic, and visual cues for sentiment analysis.