Abstract:Evaluating large language models (LLMs) on open-ended tasks without ground-truth labels is increasingly done via the LLM-as-a-judge paradigm. A critical but under-modeled issue is that judge LLMs differ substantially in reliability; treating all judges equally can yield biased leaderboards and misleading uncertainty estimates. More data can make evaluation more confidently wrong under misspecified aggregation. We propose a judge-aware ranking framework that extends the Bradley-Terry-Luce model by introducing judge-specific discrimination parameters, jointly estimating latent model quality and judge reliability from pairwise comparisons without reference labels. We establish identifiability up to natural normalizations and prove consistency and asymptotic normality of the maximum likelihood estimator, enabling confidence intervals for score differences and rank comparisons. Across multiple public benchmarks and a newly collected dataset, our method improves agreement with human preferences, achieves higher data efficiency than unweighted baselines, and produces calibrated uncertainty quantification for LLM rankings.
Abstract:All-in-One Image Restoration (AiOIR) faces the fundamental challenge in reconciling conflicting optimization objectives across heterogeneous degradations. Existing methods are often constrained by coarse-grained control mechanisms or fixed mapping schedules, yielding suboptimal adaptation. To address this, we propose an Uncertainty-Aware Diffusion Bridge Model (UDBM), which innovatively reformulates AiOIR as a stochastic transport problem steered by pixel-wise uncertainty. By introducing a relaxed diffusion bridge formulation which replaces the strict terminal constraint with a relaxed constraint, we model the uncertainty of degradations while theoretically resolving the drift singularity inherent in standard diffusion bridges. Furthermore, we devise a dual modulation strategy: the noise schedule aligns diverse degradations into a shared high-entropy latent space, while the path schedule adaptively regulates the transport trajectory motivated by the viscous dynamics of entropy regularization. By effectively rectifying the transport geometry and dynamics, UDBM achieves state-of-the-art performance across diverse restoration tasks within a single inference step.
Abstract:Reinforcement learning (RL) has shown strong potential for enhancing reasoning in multimodal large language models, yet existing video reasoning methods often rely on coarse sequence-level rewards or single-factor token selection, neglecting fine-grained links among visual inputs, temporal dynamics, and linguistic outputs, limiting both accuracy and interpretability. We propose Video-KTR, a modality-aware policy shaping framework that performs selective, token-level RL by combining three attribution signals: (1) visual-aware tokens identified via counterfactual masking to reveal perceptual dependence; (2) temporal-aware tokens detected through frame shuffling to expose temporal sensitivity; and (3) high-entropy tokens signaling predictive uncertainty. By reinforcing only these key tokens, Video-KTR focuses learning on semantically informative, modality-sensitive content while filtering out low-value tokens. Across five challenging benchmarks, Video-KTR achieves state-of-the-art or highly competitive results, achieving 42.7\% on Video-Holmes (surpassing GPT-4o) with consistent gains on both reasoning and general video understanding tasks. Ablation studies verify the complementary roles of the attribution signals and the robustness of targeted token-level updates. Overall, Video-KTR improves accuracy and interpretability, offering a simple, drop-in extension to RL for complex video reasoning. Our code and models are available at https://github.com/zywang0104/Video-KTR.
Abstract:Understanding what users like is relatively straightforward; understanding what users dislike, however, remains a challenging and underexplored problem. Research into users' negative preferences has gained increasing importance in modern recommendation systems. Numerous platforms have introduced explicit negative feedback mechanisms and leverage such signals to refine their recommendation models. Beyond traditional business metrics, user experience-driven metrics, such as negative feedback rates, have become critical indicators for evaluating system performance. However, most existing approaches primarily use negative feedback as an auxiliary signal to enhance positive recommendations, paying little attention to directly modeling negative interests, which can be highly valuable in offline applications. Moreover, due to the inherent sparsity of negative feedback data, models often suffer from context understanding biases induced by positive feedback dominance. To address these challenges, we propose the first large language model framework for negative feedback modeling with special designed context-discerning modules. We use semantic ID Representation to replace text-based item descriptions and introduce an item-level alignment task that enhances the LLM's understanding of the semantic context behind negative feedback. Furthermore, we design a Progressive GRPO training paradigm that enables the model to dynamically balance the positive and negative behavioral context utilization. Besides, our investigation further reveals a fundamental misalignment between the conventional next-negative-item prediction objective and users' true negative preferences, which is heavily influenced by the system's recommendation order. To mitigate this, we propose a novel reward function and evaluation metric grounded in multi-day future negative feedback and their collaborative signals.
Abstract:COVID-19 is a respiratory disease that caused a global pandemic in 2019. It is highly infectious and has the following symptoms: fever or chills, cough, shortness of breath, fatigue, muscle or body aches, headache, the new loss of taste or smell, sore throat, congestion or runny nose, nausea or vomiting, and diarrhea. These symptoms vary in severity; some people with many risk factors have been known to have lengthy hospital stays or die from the disease. In this paper, we analyze patients' electronic health records (EHR) to predict the severity of their COVID-19 infection using the length of stay (LOS) as our measurement of severity. This is an imbalanced classification problem, as many people have a shorter LOS rather than a longer one. To combat this problem, we synthetically create alternate oversampled training data sets. Once we have this oversampled data, we run it through an Artificial Neural Network (ANN), which during training has its hyperparameters tuned using Bayesian optimization. We select the model with the best F1 score and then evaluate it and discuss it.




Abstract:Recommender systems are among the most impactful applications of artificial intelligence, serving as critical infrastructure connecting users, merchants, and platforms. However, most current industrial systems remain heavily reliant on historical co-occurrence patterns and log-fitting objectives, i.e., optimizing for past user interactions without explicitly modeling user intent. This log-fitting approach often leads to overfitting to narrow historical preferences, failing to capture users' evolving and latent interests. As a result, it reinforces filter bubbles and long-tail phenomena, ultimately harming user experience and threatening the sustainability of the whole recommendation ecosystem. To address these challenges, we rethink the overall design paradigm of recommender systems and propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline. By integrating large language models (LLMs) into key stages of user interest mining, item retrieval, and explanation generation, RecGPT transforms log-fitting recommendation into an intent-centric process. To effectively align general-purpose LLMs to the above domain-specific recommendation tasks at scale, RecGPT incorporates a multi-stage training paradigm, which integrates reasoning-enhanced pre-alignment and self-training evolution, guided by a Human-LLM cooperative judge system. Currently, RecGPT has been fully deployed on the Taobao App. Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders: users benefit from increased content diversity and satisfaction, merchants and the platform gain greater exposure and conversions. These comprehensive improvement results across all stakeholders validates that LLM-driven, intent-centric design can foster a more sustainable and mutually beneficial recommendation ecosystem.
Abstract:Large vision-language models (LVLMs) have significantly advanced numerous fields. In this work, we explore how to harness their potential to address 3D scene understanding tasks, using 3D question answering (3D-QA) as a representative example. Due to the limited training data in 3D, we do not train LVLMs but infer in a zero-shot manner. Specifically, we sample 2D views from a 3D point cloud and feed them into 2D models to answer a given question. When the 2D model is chosen, e.g., LLAVA-OV, the quality of sampled views matters the most. We propose cdViews, a novel approach to automatically selecting critical and diverse Views for 3D-QA. cdViews consists of two key components: viewSelector prioritizing critical views based on their potential to provide answer-specific information, and viewNMS enhancing diversity by removing redundant views based on spatial overlap. We evaluate cdViews on the widely-used ScanQA and SQA benchmarks, demonstrating that it achieves state-of-the-art performance in 3D-QA while relying solely on 2D models without fine-tuning. These findings support our belief that 2D LVLMs are currently the most effective alternative (of the resource-intensive 3D LVLMs) for addressing 3D tasks.
Abstract:Due to the auto-regressive nature of current video large language models (Video-LLMs), the inference latency increases as the input sequence length grows, posing challenges for the efficient processing of video sequences that are usually very long. We observe that during decoding, the attention scores of most tokens in Video-LLMs tend to be sparse and concentrated, with only certain tokens requiring comprehensive full attention. Based on this insight, we introduce Sparse-to-Dense (StD), a novel decoding strategy that integrates two distinct modules: one leveraging sparse top-K attention and the other employing dense full attention. These modules collaborate to accelerate Video-LLMs without loss. The fast (sparse) model speculatively decodes multiple tokens, while the slow (dense) model verifies them in parallel. StD is a tuning-free, plug-and-play solution that achieves up to a 1.94$\times$ walltime speedup in video processing. It maintains model performance while enabling a seamless transition from a standard Video-LLM to a sparse Video-LLM with minimal code modifications.
Abstract:Electronic Health Records (EHRs) are digital records of patient information, often containing unstructured clinical text. Named Entity Recognition (NER) is essential in EHRs for extracting key medical entities like problems, tests, and treatments to support downstream clinical applications. This paper explores prompt-based medical entity recognition using large language models (LLMs), specifically GPT-4o and DeepSeek-R1, guided by various prompt engineering techniques, including zero-shot, few-shot, and an ensemble approach. Among all strategies, GPT-4o with prompt ensemble achieved the highest classification performance with an F1-score of 0.95 and recall of 0.98, outperforming DeepSeek-R1 on the task. The ensemble method improved reliability by aggregating outputs through embedding-based similarity and majority voting.
Abstract:Understanding patient feedback is crucial for improving healthcare services, yet analyzing unlabeled short-text feedback presents significant challenges due to limited data and domain-specific nuances. Traditional supervised learning approaches require extensive labeled datasets, making unsupervised methods more viable for uncovering meaningful insights from patient feedback. This study explores unsupervised methods to extract meaningful topics from 439 survey responses collected from a healthcare system in Wisconsin, USA. A keyword-based filtering approach was applied to isolate complaint-related feedback using a domain-specific lexicon. To delve deeper and analyze dominant topics in feedback, we explored traditional topic modeling methods, including Latent Dirichlet Allocation (LDA) and Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM), alongside BERTopic, an advanced neural embedding-based clustering approach. To improve coherence and interpretability where data are scarce and consist of short-texts, we propose kBERT, an integration of BERT embeddings with k-means clustering. Model performance was assessed using coherence scores (Cv ) for topic interpretability and average Inverted Rank-Biased Overlap (IRBOavg) for topic diversity. Results indicate that kBERT achieves the highest coherence (Cv = 0.53) and distinct topic separation (IRBOavg = 1.00), outperforming all other models in short-text healthcare feedback analysis. Our findings emphasize the importance of embedding-based techniques for topic identification and highlight the need for context-aware models in healthcare analytics.