Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
May 20, 2025
Abstract:We present PersonaConvBench, a large-scale benchmark for evaluating personalized reasoning and generation in multi-turn conversations with large language models (LLMs). Unlike existing work that focuses on either personalization or conversational structure in isolation, PersonaConvBench integrates both, offering three core tasks: sentence classification, impact regression, and user-centric text generation across ten diverse Reddit-based domains. This design enables systematic analysis of how personalized conversational context shapes LLM outputs in realistic multi-user scenarios. We benchmark several commercial and open-source LLMs under a unified prompting setup and observe that incorporating personalized history yields substantial performance improvements, including a 198 percent relative gain over the best non-conversational baseline in sentiment classification. By releasing PersonaConvBench with evaluations and code, we aim to support research on LLMs that adapt to individual styles, track long-term context, and produce contextually rich, engaging responses.
Via

May 19, 2025
Abstract:The continued rise of neural networks and large language models in the more recent past has altered the natural language processing landscape, enabling new approaches towards typical language tasks and achieving mainstream success. Despite the huge success of large language models, many disadvantages still remain and through this work we assess the state of the art in five application scenarios with a particular focus on the future perspectives and sensible application scenarios of traditional and older approaches and techniques. In this paper we survey recent publications in the application scenarios classification, information and relation extraction, text simplification as well as text summarization. After defining our terminology, i.e., which features are characteristic for traditional techniques in our interpretation for the five scenarios, we survey if such traditional approaches are still being used, and if so, in what way they are used. It turns out that all five application scenarios still exhibit traditional models in one way or another, as part of a processing pipeline, as a comparison/baseline to the core model of the respective paper, or as the main model(s) of the paper. For the complete statistics, see https://zenodo.org/records/13683801
* 14 pages, 1 figure
Via

May 09, 2025
Abstract:Few-shot text classification has important application value in low-resource environments. This paper proposes a strategy that combines adaptive fine-tuning, contrastive learning, and regularization optimization to improve the classification performance of Transformer-based models. Experiments on the FewRel 2.0 dataset show that T5-small, DeBERTa-v3, and RoBERTa-base perform well in few-shot tasks, especially in the 5-shot setting, which can more effectively capture text features and improve classification accuracy. The experiment also found that there are significant differences in the classification difficulty of different relationship categories. Some categories have fuzzy semantic boundaries or complex feature distributions, making it difficult for the standard cross entropy loss to learn the discriminative information required to distinguish categories. By introducing contrastive loss and regularization loss, the generalization ability of the model is enhanced, effectively alleviating the overfitting problem in few-shot environments. In addition, the research results show that the use of Transformer models or generative architectures with stronger self-attention mechanisms can help improve the stability and accuracy of few-shot classification.
Via

May 13, 2025
Abstract:Text-attributed graph (TAG) provides a text description for each graph node, and few- and zero-shot node classification on TAGs have many applications in fields such as academia and social networks. Existing work utilizes various graph-based augmentation techniques to train the node and text embeddings, while text-based augmentations are largely unexplored. In this paper, we propose Text Semantics Augmentation (TSA) to improve accuracy by introducing more text semantic supervision signals. Specifically, we design two augmentation techniques, i.e., positive semantics matching and negative semantics contrast, to provide more reference texts for each graph node or text description. Positive semantic matching retrieves texts with similar embeddings to match with a graph node. Negative semantic contrast adds a negative prompt to construct a text description with the opposite semantics, which is contrasted with the original node and text. We evaluate TSA on 5 datasets and compare with 13 state-of-the-art baselines. The results show that TSA consistently outperforms all baselines, and its accuracy improvements over the best-performing baseline are usually over 5%.
Via

May 09, 2025
Abstract:Reliance on spurious correlations (shortcuts) has been shown to underlie many of the successes of language models. Previous work focused on identifying the input elements that impact prediction. We investigate how shortcuts are actually processed within the model's decision-making mechanism. We use actor names in movie reviews as controllable shortcuts with known impact on the outcome. We use mechanistic interpretability methods and identify specific attention heads that focus on shortcuts. These heads gear the model towards a label before processing the complete input, effectively making premature decisions that bypass contextual analysis. Based on these findings, we introduce Head-based Token Attribution (HTA), which traces intermediate decisions back to input tokens. We show that HTA is effective in detecting shortcuts in LLMs and enables targeted mitigation by selectively deactivating shortcut-related attention heads.
Via

May 08, 2025
Abstract:Hierarchical Text Classification (HTC) involves assigning documents to labels organized within a taxonomy. Most previous research on HTC has focused on supervised methods. However, in real-world scenarios, employing supervised HTC can be challenging due to a lack of annotated data. Moreover, HTC often faces issues with large label spaces and long-tail distributions. In this work, we present Knowledge Graphs for zero-shot Hierarchical Text Classification (KG-HTC), which aims to address these challenges of HTC in applications by integrating knowledge graphs with Large Language Models (LLMs) to provide structured semantic context during classification. Our method retrieves relevant subgraphs from knowledge graphs related to the input text using a Retrieval-Augmented Generation (RAG) approach. Our KG-HTC can enhance LLMs to understand label semantics at various hierarchy levels. We evaluate KG-HTC on three open-source HTC datasets: WoS, DBpedia, and Amazon. Our experimental results show that KG-HTC significantly outperforms three baselines in the strict zero-shot setting, particularly achieving substantial improvements at deeper levels of the hierarchy. This evaluation demonstrates the effectiveness of incorporating structured knowledge into LLMs to address HTC's challenges in large label spaces and long-tailed label distributions. Our code is available at: https://github.com/QianboZang/KG-HTC.
Via

May 23, 2025
Abstract:Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. However, existing SNNs still exhibit a significant performance gap compared to Artificial Neural Networks (ANNs) due to inadequate pre-training strategies. These limitations manifest as restricted generalization ability, task specificity, and a lack of multimodal understanding, particularly in challenging tasks such as multimodal question answering and zero-shot 3D classification. To overcome these challenges, we propose a Spike-based Vision-Language (SVL) pretraining framework that empowers SNNs with open-world 3D understanding while maintaining spike-driven efficiency. SVL introduces two key components: (i) Multi-scale Triple Alignment (MTA) for label-free triplet-based contrastive learning across 3D, image, and text modalities, and (ii) Re-parameterizable Vision-Language Integration (Rep-VLI) to enable lightweight inference without relying on large text encoders. Extensive experiments show that SVL achieves a top-1 accuracy of 85.4% in zero-shot 3D classification, surpassing advanced ANN models, and consistently outperforms prior SNNs on downstream tasks, including 3D classification (+6.1%), DVS action recognition (+2.1%), 3D detection (+1.1%), and 3D segmentation (+2.1%) with remarkable efficiency. Moreover, SVL enables SNNs to perform open-world 3D question answering, sometimes outperforming ANNs. To the best of our knowledge, SVL represents the first scalable, generalizable, and hardware-friendly paradigm for 3D open-world understanding, effectively bridging the gap between SNNs and ANNs in complex open-world understanding tasks. Code is available https://github.com/bollossom/SVL.
Via

May 28, 2025
Abstract:The development of large-scale image-text pair datasets has significantly advanced self-supervised learning in Vision-Language Processing (VLP). However, directly applying general-domain architectures such as CLIP to medical data presents challenges, particularly in handling negations and addressing the inherent data imbalance of medical datasets. To address these issues, we propose a novel approach that integrates clinically-enhanced dynamic soft labels and medical graphical alignment, thereby improving clinical comprehension and the applicability of contrastive loss in medical contexts. Furthermore, we introduce negation-based hard negatives to deepen the model's understanding of the complexities of clinical language. Our approach is easily integrated into the medical CLIP training pipeline and achieves state-of-the-art performance across multiple tasks, including zero-shot, fine-tuned classification, and report retrieval. To comprehensively evaluate our model's capacity for understanding clinical language, we introduce CXR-Align, a benchmark uniquely designed to evaluate the understanding of negation and clinical information within chest X-ray (CXR) datasets. Experimental results demonstrate that our proposed methods are straightforward to implement and generalize effectively across contrastive learning frameworks, enhancing medical VLP capabilities and advancing clinical language understanding in medical imaging.
* 16 pages (8 main, 2 references, 6 appendix), 13 figures. Accepted to
CVPR 2025. This author-accepted manuscript includes an expanded ethics/data
user agreement section. The final version will appear in the Proceedings of
CVPR 2025
Via

May 15, 2025
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing across a wide range of styles and genres. However, such capabilities are prone to potential misuse, such as fake news generation, spam email creation, and misuse in academic assignments. As a result, accurate detection of AI-generated text and identification of the model that generated it are crucial for maintaining the responsible use of LLMs. In this work, we addressed two sub-tasks put forward by the Defactify workshop under AI-Generated Text Detection shared task at the Association for the Advancement of Artificial Intelligence (AAAI 2025): Task A involved distinguishing between human-authored or AI-generated text, while Task B focused on attributing text to its originating language model. For each task, we proposed two neural architectures: an optimized model and a simpler variant. For Task A, the optimized neural architecture achieved fifth place with $F1$ score of 0.994, and for Task B, the simpler neural architecture also ranked fifth place with $F1$ score of 0.627.
Via

May 23, 2025
Abstract:Ground deformation is regarded in volcanology as a key precursor signal preceding volcanic eruptions. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) enables consistent, global-scale deformation tracking; however, deep learning methods remain largely unexplored in this domain, mainly due to the lack of a curated machine learning dataset. In this work, we build on the existing Hephaestus dataset, and introduce Hephaestus Minicubes, a global collection of 38 spatiotemporal datacubes offering high resolution, multi-source and multi-temporal information, covering 44 of the world's most active volcanoes over a 7-year period. Each spatiotemporal datacube integrates InSAR products, topographic data, as well as atmospheric variables which are known to introduce signal delays that can mimic ground deformation in InSAR imagery. Furthermore, we provide expert annotations detailing the type, intensity and spatial extent of deformation events, along with rich text descriptions of the observed scenes. Finally, we present a comprehensive benchmark, demonstrating Hephaestus Minicubes' ability to support volcanic unrest monitoring as a multi-modal, multi-temporal classification and semantic segmentation task, establishing strong baselines with state-of-the-art architectures. This work aims to advance machine learning research in volcanic monitoring, contributing to the growing integration of data-driven methods within Earth science applications.
Via
