Alert button
Picture for Harika Abburi

Harika Abburi

Alert button

Generative AI Text Classification using Ensemble LLM Approaches

Sep 14, 2023
Harika Abburi, Michael Suesserman, Nirmala Pudota, Balaji Veeramani, Edward Bowen, Sanmitra Bhattacharya

Large Language Models (LLMs) have shown impressive performance across a variety of Artificial Intelligence (AI) and natural language processing tasks, such as content creation, report generation, etc. However, unregulated malign application of these models can create undesirable consequences such as generation of fake news, plagiarism, etc. As a result, accurate detection of AI-generated language can be crucial in responsible usage of LLMs. In this work, we explore 1) whether a certain body of text is AI generated or written by human, and 2) attribution of a specific language model in generating a body of text. Texts in both English and Spanish are considered. The datasets used in this study are provided as part of the Automated Text Identification (AuTexTification) shared task. For each of the research objectives stated above, we propose an ensemble neural model that generates probabilities from different pre-trained LLMs which are used as features to a Traditional Machine Learning (TML) classifier following it. For the first task of distinguishing between AI and human generated text, our model ranked in fifth and thirteenth place (with macro $F1$ scores of 0.733 and 0.649) for English and Spanish texts, respectively. For the second task on model attribution, our model ranked in first place with macro $F1$ scores of 0.625 and 0.653 for English and Spanish texts, respectively.

Viaarxiv icon

Multi-label Categorization of Accounts of Sexism using a Neural Framework

Nov 18, 2019
Pulkit Parikh, Harika Abburi, Pinkesh Badjatiya, Radhika Krishnan, Niyati Chhaya, Manish Gupta, Vasudeva Varma

Figure 1 for Multi-label Categorization of Accounts of Sexism using a Neural Framework
Figure 2 for Multi-label Categorization of Accounts of Sexism using a Neural Framework
Figure 3 for Multi-label Categorization of Accounts of Sexism using a Neural Framework
Figure 4 for Multi-label Categorization of Accounts of Sexism using a Neural Framework

Sexism, an injustice that subjects women and girls to enormous suffering, manifests in blatant as well as subtle ways. In the wake of growing documentation of experiences of sexism on the web, the automatic categorization of accounts of sexism has the potential to assist social scientists and policy makers in studying and countering sexism better. The existing work on sexism classification, which is different from sexism detection, has certain limitations in terms of the categories of sexism used and/or whether they can co-occur. To the best of our knowledge, this is the first work on the multi-label classification of sexism of any kind(s), and we contribute the largest dataset for sexism categorization. We develop a neural solution for this multi-label classification that can combine sentence representations obtained using models such as BERT with distributional and linguistic word embeddings using a flexible, hierarchical architecture involving recurrent components and optional convolutional ones. Further, we leverage unlabeled accounts of sexism to infuse domain-specific elements into our framework. The best proposed method outperforms several deep learning as well as traditional machine learning baselines by an appreciable margin.

* Accepted at 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP - 2019) 
Viaarxiv icon