What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
May 28, 2025
Abstract:User-item interaction histories are pivotal for sequential recommendation systems but often include noise, such as unintended clicks or actions that fail to reflect genuine user preferences. To address this issue, we propose the User-Consistent Preference-based Sequential Recommendation System (ConsRec), designed to capture stable user preferences and filter noisy items from interaction histories. Specifically, ConsRec constructs a user-interacted item graph, learns item similarities from their text representations, and then extracts the maximum connected subgraph from the user-interacted item graph for denoising items. Experimental results on the Yelp and Amazon Product datasets illustrate that ConsRec achieves a 13% improvement over baseline recommendation models, showing its effectiveness in denoising user-interacted items. Further analysis reveals that the denoised interaction histories form semantically tighter clusters of user-preferred items, leading to higher relevance scores for ground-truth targets and more accurate recommendations. All codes are available at https://github.com/NEUIR/ConsRec.
Via

May 27, 2025
Abstract:Personalized programming tutoring, such as exercise recommendation, can enhance learners' efficiency, motivation, and outcomes, which is increasingly important in modern digital education. However, the lack of sufficient and high-quality programming data, combined with the mismatch between offline evaluation and real-world learning, hinders the practical deployment of such systems. To address this challenge, many approaches attempt to simulate learner practice data, yet they often overlook the fine-grained, iterative nature of programming learning, resulting in a lack of interpretability and granularity. To fill this gap, we propose a LLM-based agent, CoderAgent, to simulate students' programming processes in a fine-grained manner without relying on real data. Specifically, we equip each human learner with an intelligent agent, the core of which lies in capturing the cognitive states of the human programming practice process. Inspired by ACT-R, a cognitive architecture framework, we design the structure of CoderAgent to align with human cognitive architecture by focusing on the mastery of programming knowledge and the application of coding ability. Recognizing the inherent patterns in multi-layered cognitive reasoning, we introduce the Programming Tree of Thought (PTOT), which breaks down the process into four steps: why, how, where, and what. This approach enables a detailed analysis of iterative problem-solving strategies. Finally, experimental evaluations on real-world datasets demonstrate that CoderAgent provides interpretable insights into learning trajectories and achieves accurate simulations, paving the way for personalized programming education.
* Accepted by IJCAI2025
Via

May 27, 2025
Abstract:This study explores the integration of eXtreme Programming (XP) and the Cross-Industry Standard Process for Data Mining (CRISP-DM) in agile Data Science projects. We conducted a case study at the e-commerce company Elo7 to answer the research question: How can the agility of the XP method be integrated with CRISP-DM in Data Science projects? Data was collected through interviews and questionnaires with a Data Science team consisting of data scientists, ML engineers, and data product managers. The results show that 86% of the team frequently or always applies CRISP-DM, while 71% adopt XP practices in their projects. Furthermore, the study demonstrates that it is possible to combine CRISP-DM with XP in Data Science projects, providing a structured and collaborative approach. Finally, the study generated improvement recommendations for the company.
Via

May 27, 2025
Abstract:Traditional photography composition approaches are dominated by 2D cropping-based methods. However, these methods fall short when scenes contain poorly arranged subjects. Professional photographers often employ perspective adjustment as a form of 3D recomposition, modifying the projected 2D relationships between subjects while maintaining their actual spatial positions to achieve better compositional balance. Inspired by this artistic practice, we propose photography perspective composition (PPC), extending beyond traditional cropping-based methods. However, implementing the PPC faces significant challenges: the scarcity of perspective transformation datasets and undefined assessment criteria for perspective quality. To address these challenges, we present three key contributions: (1) An automated framework for building PPC datasets through expert photographs. (2) A video generation approach that demonstrates the transformation process from suboptimal to optimal perspectives. (3) A perspective quality assessment (PQA) model constructed based on human performance. Our approach is concise and requires no additional prompt instructions or camera trajectories, helping and guiding ordinary users to enhance their composition skills.
Via

May 27, 2025
Abstract:Sequential recommendation is a popular paradigm in modern recommender systems. In particular, one challenging problem in this space is cross-domain sequential recommendation (CDSR), which aims to predict future behaviors given user interactions across multiple domains. Existing CDSR frameworks are mostly built on the self-attention transformer and seek to improve by explicitly injecting additional domain-specific components (e.g. domain-aware module blocks). While these additional components help, we argue they overlook the core self-attention module already present in the transformer, a naturally powerful tool to learn correlations among behaviors. In this work, we aim to improve the CDSR performance for simple models from a novel perspective of enhancing the self-attention. Specifically, we introduce a Pareto-optimal self-attention and formulate the cross-domain learning as a multi-objective problem, where we optimize the recommendation task while dynamically minimizing the cross-domain attention scores. Our approach automates knowledge transfer in CDSR (dubbed as AutoCDSR) -- it not only mitigates negative transfer but also encourages complementary knowledge exchange among auxiliary domains. Based on the idea, we further introduce AutoCDSR+, a more performant variant with slight additional cost. Our proposal is easy to implement and works as a plug-and-play module that can be incorporated into existing transformer-based recommenders. Besides flexibility, it is practical to deploy because it brings little extra computational overheads without heavy hyper-parameter tuning. AutoCDSR on average improves Recall@10 for SASRec and Bert4Rec by 9.8% and 16.0% and NDCG@10 by 12.0% and 16.7%, respectively. Code is available at https://github.com/snap-research/AutoCDSR.
* Accepted to KDD'25
Via

May 27, 2025
Abstract:As generative AI systems become widely adopted, they enable unprecedented creation levels of synthetic data across text, images, audio, and video modalities. While research has addressed the energy consumption of model training and inference, a critical sustainability challenge remains understudied: digital waste. This term refers to stored data that consumes resources without serving a specific (and/or immediate) purpose. This paper presents this terminology in the AI context and introduces digital waste as an ethical imperative within (generative) AI development, positioning environmental sustainability as core for responsible innovation. Drawing from established digital resource management approaches, we examine how other disciplines manage digital waste and identify transferable approaches for the AI community. We propose specific recommendations encompassing re-search directions, technical interventions, and cultural shifts to mitigate the environmental consequences of in-definite data storage. By expanding AI ethics beyond immediate concerns like bias and privacy to include inter-generational environmental justice, this work contributes to a more comprehensive ethical framework that considers the complete lifecycle impact of generative AI systems.
* 8 pages, submitted to AAAI/ACM Conference on AI, Ethics and Society
Via

May 27, 2025
Abstract:Despite advances in large language model capabilities in recent years, a large gap remains in their capabilities and safety performance for many languages beyond a relatively small handful of globally dominant languages. This paper provides researchers, policymakers and governance experts with an overview of key challenges to bridging the "language gap" in AI and minimizing safety risks across languages. We provide an analysis of why the language gap in AI exists and grows, and how it creates disparities in global AI safety. We identify barriers to address these challenges, and recommend how those working in policy and governance can help address safety concerns associated with the language gap by supporting multilingual dataset creation, transparency, and research.
Via

May 27, 2025
Abstract:Agriculture constitutes a primary source of food production, economic growth and employment in India, but the sector is confronted with low farm productivity and yields aggravated by increased pressure on natural resources and adverse climate change variability. Efforts involving green revolution, land irrigations, improved seeds and organic farming have yielded suboptimal outcomes. The adoption of computational tools like crop recommendation systems offers a new way to provide insights and help farmers tackle low productivity. However, most agricultural recommendation systems in India focus narrowly on environmental factors and regions, limiting accurate predictions of high-yield, profitable crops. This study uses environmental and economic factors with 19 crops across 15 states to develop and evaluate Random Forest and SVM models using 10-fold Cross Validation, Time-series Split, and Lag Variables. The 10-fold cross validation showed high accuracy (RF: 99.96%, SVM: 94.71%) but raised overfitting concerns. Introducing temporal order, better reflecting real-world conditions, reduced performance (RF: 78.55%, SVM: 71.18%) in the Time-series Split.To further increase the model accuracy while maintaining the temporal order, the Lag Variables approach was employed, which resulted in improved performance (RF: 83.62%, SVM: 74.38%) compared to the 10-fold cross validation approach. Overall, the models in the Time-series Split and Lag Variable Approaches offer practical insights by handling temporal dependencies and enhancing its adaptability to changing agricultural conditions over time. Consequently, the study shows the Random Forest model developed based on the Lag Variables as the most preferred algorithm for optimal crop recommendation in the Indian context.
* 22 pages and 13 figures
Via

May 27, 2025
Abstract:Decentralized machine learning - where each client keeps its own data locally and uses its own computational resources to collaboratively train a model by exchanging peer-to-peer messages - is increasingly popular, as it enables better scalability and control over the data. A major challenge in this setting is that learning dynamics depend on the topology of the communication graph, which motivates the use of real graph datasets for benchmarking decentralized algorithms. Unfortunately, existing graph datasets are largely limited to for-profit social networks crawled at a fixed point in time and often collected at the user scale, where links are heavily influenced by the platform and its recommendation algorithms. The Fediverse, which includes several free and open-source decentralized social media platforms such as Mastodon, Misskey, and Lemmy, offers an interesting real-world alternative. We introduce Fedivertex, a new dataset of 182 graphs, covering seven social networks from the Fediverse, crawled weekly over 14 weeks. We release the dataset along with a Python package to facilitate its use, and illustrate its utility on several tasks, including a new defederation task, which captures a process of link deletion observed on these networks.
Via

May 27, 2025
Abstract:User-item interactions contain rich collaborative signals that form the backbone of many successful recommender systems. While recent work has explored the use of large language models (LLMs) for recommendation, it remains unclear whether LLMs can effectively reason over this type of collaborative information. In this paper, we conduct a systematic comparison between LLMs and classical matrix factorization (MF) models to assess LLMs' ability to leverage user-item interaction data. We further introduce a simple retrieval-augmented generation (RAG) method that enhances LLMs by grounding their predictions in structured interaction data. Our experiments reveal that current LLMs often fall short in capturing collaborative patterns inherent to MF models, but that our RAG-based approach substantially improves recommendation quality-highlighting a promising direction for future LLM-based recommenders.
Via
