Abstract:Decentralized machine learning - where each client keeps its own data locally and uses its own computational resources to collaboratively train a model by exchanging peer-to-peer messages - is increasingly popular, as it enables better scalability and control over the data. A major challenge in this setting is that learning dynamics depend on the topology of the communication graph, which motivates the use of real graph datasets for benchmarking decentralized algorithms. Unfortunately, existing graph datasets are largely limited to for-profit social networks crawled at a fixed point in time and often collected at the user scale, where links are heavily influenced by the platform and its recommendation algorithms. The Fediverse, which includes several free and open-source decentralized social media platforms such as Mastodon, Misskey, and Lemmy, offers an interesting real-world alternative. We introduce Fedivertex, a new dataset of 182 graphs, covering seven social networks from the Fediverse, crawled weekly over 14 weeks. We release the dataset along with a Python package to facilitate its use, and illustrate its utility on several tasks, including a new defederation task, which captures a process of link deletion observed on these networks.
Abstract:Among all privacy attacks against Machine Learning (ML), membership inference attacks (MIA) attracted the most attention. In these attacks, the attacker is given an ML model and a data point, and they must infer whether the data point was used for training. The attacker also has an auxiliary dataset to tune their inference algorithm. Attack papers commonly simulate setups in which the attacker's and the target's datasets are sampled from the same distribution. This setting is convenient to perform experiments, but it rarely holds in practice. ML literature commonly starts with similar simplifying assumptions (i.e., "i.i.d." datasets), and later generalizes the results to support heterogeneous data distributions. Similarly, our work makes a first step in the generalization of the MIA evaluation to heterogeneous data. First, we design a metric to measure the heterogeneity between any pair of tabular data distributions. This metric provides a continuous scale to analyze the phenomenon. Second, we compare two methodologies to simulate a data heterogeneity between the target and the attacker. These setups provide opposite performances: 90% attack accuracy vs. 50% (i.e., random guessing). Our results show that the MIA accuracy depends on the experimental setup; and even if research on MIA considers heterogeneous data setups, we have no standardized baseline of how to simulate it. The lack of such a baseline for MIA experiments poses a significant challenge to risk assessments in real-world machine learning scenarios.