Abstract:Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by incorporating external knowledge. Recently, some works have incorporated iterative knowledge accumulation processes into RAG models to progressively accumulate and refine query-related knowledge, thereby constructing more comprehensive knowledge representations. However, these iterative processes often lack a coherent organizational structure, which limits the construction of more comprehensive and cohesive knowledge representations. To address this, we propose PAGER, a page-driven autonomous knowledge representation framework for RAG. PAGER first prompts an LLM to construct a structured cognitive outline for a given question, which consists of multiple slots representing a distinct knowledge aspect. Then, PAGER iteratively retrieves and refines relevant documents to populate each slot, ultimately constructing a coherent page that serves as contextual input for guiding answer generation. Experiments on multiple knowledge-intensive benchmarks and backbone models show that PAGER consistently outperforms all RAG baselines. Further analyses demonstrate that PAGER constructs higher-quality and information-dense knowledge representations, better mitigates knowledge conflicts, and enables LLMs to leverage external knowledge more effectively. All code is available at https://github.com/OpenBMB/PAGER.
Abstract:User-item interaction histories are pivotal for sequential recommendation systems but often include noise, such as unintended clicks or actions that fail to reflect genuine user preferences. To address this issue, we propose the User-Consistent Preference-based Sequential Recommendation System (ConsRec), designed to capture stable user preferences and filter noisy items from interaction histories. Specifically, ConsRec constructs a user-interacted item graph, learns item similarities from their text representations, and then extracts the maximum connected subgraph from the user-interacted item graph for denoising items. Experimental results on the Yelp and Amazon Product datasets illustrate that ConsRec achieves a 13% improvement over baseline recommendation models, showing its effectiveness in denoising user-interacted items. Further analysis reveals that the denoised interaction histories form semantically tighter clusters of user-preferred items, leading to higher relevance scores for ground-truth targets and more accurate recommendations. All codes are available at https://github.com/NEUIR/ConsRec.