Microsoft Research
Abstract:Multimodal foundation models hold significant potential for automating radiology report generation, thereby assisting clinicians in diagnosing cardiac diseases. However, generated reports often suffer from serious factual inaccuracy. In this paper, we introduce a fact-aware multimodal retrieval-augmented pipeline in generating accurate radiology reports (FactMM-RAG). We first leverage RadGraph to mine factual report pairs, then integrate factual knowledge to train a universal multimodal retriever. Given a radiology image, our retriever can identify high-quality reference reports to augment multimodal foundation models, thus enhancing the factual completeness and correctness of report generation. Experiments on two benchmark datasets show that our multimodal retriever outperforms state-of-the-art retrievers on both language generation and radiology-specific metrics, up to 6.5% and 2% score in F1CheXbert and F1RadGraph. Further analysis indicates that employing our factually-informed training strategy imposes an effective supervision signal, without relying on explicit diagnostic label guidance, and successfully propagates fact-aware capabilities from the multimodal retriever to the multimodal foundation model in radiology report generation.
Abstract:Data valuation quantifies the value of training data, and is used for data attribution (i.e., determining the contribution of training data towards model predictions), and data selection; both of which are important for curating high-quality datasets to train large language models. In our paper, we show that data valuation through in-context probing (i.e., prompting a LLM) approximates influence functions for selecting training data. We provide a theoretical sketch on this connection based on transformer models performing "implicit" gradient descent on its in-context inputs. Our empirical findings show that in-context probing and gradient-based influence frameworks are similar in how they rank training data. Furthermore, fine-tuning experiments on data selected by either method reveal similar model performance.
Abstract:Large language models (LLMs) have exhibited remarkable performance across various tasks in natural language processing. Nevertheless, challenges still arise when these tasks demand domain-specific expertise and advanced analytical skills, such as conducting research surveys on a designated topic. In this research, we develop ResearchArena, a benchmark that measures LLM agents' ability to conduct academic surveys, an initial step of academic research process. Specifically, we deconstructs the surveying process into three stages 1) information discovery: locating relevant papers, 2) information selection: assessing papers' importance to the topic, and 3) information organization: organizing papers into meaningful structures. In particular, we establish an offline environment comprising 12.0M full-text academic papers and 7.9K survey papers, which evaluates agents' ability to locate supporting materials for composing the survey on a topic, rank the located papers based on their impact, and organize these into a hierarchical knowledge mind-map. With this benchmark, we conduct preliminary evaluations of existing techniques and find that all LLM-based methods under-performing when compared to basic keyword-based retrieval techniques, highlighting substantial opportunities for future research.
Abstract:Pretraining data selection has the potential to improve language model pretraining efficiency by utilizing higher-quality data from massive web data corpora. Current data selection methods, which rely on either hand-crafted rules or larger reference models, are conducted statically and do not capture the evolving data preferences during pretraining. In this paper, we introduce model-aware data selection with data influence models (MATES), where a data influence model continuously adapts to the evolving data preferences of the pretraining model and then selects the data most effective for the current pretraining progress. Specifically, we fine-tune a small data influence model to approximate oracle data preference signals collected by locally probing the pretraining model and to select data accordingly for the next pretraining stage. Experiments on Pythia and the C4 dataset demonstrate that MATES significantly outperforms random data selection on extensive downstream tasks in both zero- and few-shot settings. It doubles the gains achieved by recent data selection approaches that leverage larger reference models and reduces the total FLOPs required to reach certain performances by half. Further analysis validates the ever-changing data preferences of pretraining models and the effectiveness of our data influence models to capture them. Our code is open-sourced at https://github.com/cxcscmu/MATES.
Abstract:Recent breakthroughs in large models have highlighted the critical significance of data scale, labels and modals. In this paper, we introduce MS MARCO Web Search, the first large-scale information-rich web dataset, featuring millions of real clicked query-document labels. This dataset closely mimics real-world web document and query distribution, provides rich information for various kinds of downstream tasks and encourages research in various areas, such as generic end-to-end neural indexer models, generic embedding models, and next generation information access system with large language models. MS MARCO Web Search offers a retrieval benchmark with three web retrieval challenge tasks that demand innovations in both machine learning and information retrieval system research domains. As the first dataset that meets large, real and rich data requirements, MS MARCO Web Search paves the way for future advancements in AI and system research. MS MARCO Web Search dataset is available at: https://github.com/microsoft/MS-MARCO-Web-Search.
Abstract:This study investigates the existence of positional biases in Transformer-based models for text representation learning, particularly in the context of web document retrieval. We build on previous research that demonstrated loss of information in the middle of input sequences for causal language models, extending it to the domain of representation learning. We examine positional biases at various stages of training for an encoder-decoder model, including language model pre-training, contrastive pre-training, and contrastive fine-tuning. Experiments with the MS-MARCO document collection reveal that after contrastive pre-training the model already generates embeddings that better capture early contents of the input, with fine-tuning further aggravating this effect.
Abstract:Large language models (LLMs) require lengthy prompts as the input context to produce output aligned with user intentions, a process that incurs extra costs during inference. In this paper, we propose the Gist COnditioned deCOding (Gist-COCO) model, introducing a novel method for compressing prompts which also can assist the prompt interpretation and engineering. Gist-COCO employs an encoder-decoder based language model and then incorporates an additional encoder as a plugin module to compress prompts with inputs using gist tokens. It finetunes the compression plugin module and uses the representations of gist tokens to emulate the raw prompts in the vanilla language model. By verbalizing the representations of gist tokens into gist prompts, the compression ability of Gist-COCO can be generalized to different LLMs with high compression rates. Our experiments demonstrate that Gist-COCO outperforms previous prompt compression models in both passage and instruction compression tasks. Further analysis on gist verbalization results suggests that our gist prompts serve different functions in aiding language models. They may directly provide potential answers, generate the chain-of-thought, or simply repeat the inputs. All data and codes are available at https://github.com/OpenMatch/Gist-COCO .
Abstract:The web contains large-scale, diverse, and abundant information to satisfy the information-seeking needs of humans. Through meticulous data collection, preprocessing, and curation, webpages can be used as a fundamental data resource for language model pretraining. However, when confronted with the progressively revolutionized and intricate nature of webpages, rule-based/feature-based web scrapers are becoming increasingly inadequate. This paper presents a simple, fast, and effective Neural web Scraper (NeuScraper) to help extract primary and clean text contents from webpages. Experimental results show that NeuScraper surpasses the baseline scrapers by achieving more than a 20% improvement, demonstrating its potential in extracting higher-quality data to facilitate the language model pretraining. All of the code is available at https://github.com/OpenMatch/NeuScraper.
Abstract:In the emergency department (ED), patients undergo triage and multiple laboratory tests before diagnosis. This process is time-consuming, and causes ED crowding which significantly impacts patient mortality, medical errors, staff burnout, etc. This work proposes (time) cost-effective diagnostic assistance that explores the potential of artificial intelligence (AI) systems in assisting ED clinicians to make time-efficient and accurate diagnoses. Using publicly available patient data, we collaborate with ED clinicians to curate MIMIC-ED-Assist, a benchmark that measures the ability of AI systems in suggesting laboratory tests that minimize ED wait times, while correctly predicting critical outcomes such as death. We develop ED-Copilot which sequentially suggests patient-specific laboratory tests and makes diagnostic predictions. ED-Copilot uses a pre-trained bio-medical language model to encode patient information and reinforcement learning to minimize ED wait time and maximize prediction accuracy of critical outcomes. On MIMIC-ED-Assist, ED-Copilot improves prediction accuracy over baselines while halving average wait time from four hours to two hours. Ablation studies demonstrate the importance of model scale and use of a bio-medical language model. Further analyses reveal the necessity of personalized laboratory test suggestions for diagnosing patients with severe cases, as well as the potential of ED-Copilot in providing ED clinicians with informative laboratory test recommendations. Our code is available at https://github.com/cxcscmu/ED-Copilot.
Abstract:Retrieval Augmented Generation (RAG) has introduced a new paradigm for Large Language Models (LLMs), aiding in the resolution of knowledge-intensive tasks. However, current RAG models position LLMs as passive knowledge receptors, thereby restricting their capacity for learning and comprehending external knowledge. In this paper, we present ActiveRAG, an innovative RAG framework that shifts from passive knowledge acquisition to an active learning mechanism. This approach utilizes the Knowledge Construction mechanism to develop a deeper understanding of external knowledge by associating it with previously acquired or memorized knowledge. Subsequently, it designs the Cognitive Nexus mechanism to incorporate the outcomes from both chains of thought and knowledge construction, thereby calibrating the intrinsic cognition of LLMs. Our experimental results demonstrate that ActiveRAG surpasses previous RAG models, achieving a 5% improvement on question-answering datasets. All data and codes are available at https://github.com/OpenMatch/ActiveRAG.