Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

Apr 06, 2022
Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, Yongfeng Zhang

For a long period, different recommendation tasks typically require designing task-specific architectures and training objectives. As a result, it is hard to transfer the learned knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches, e.g., a sequential recommendation model can hardly be applied or transferred to a review generation method. To deal with such issues, considering that language grounding is a powerful medium to describe and represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, item metadata, and user reviews are converted to a common format -- natural language sequences. The rich information from natural language assist P5 to capture deeper semantics for recommendation. P5 learns different tasks with the same language modeling objective during pretraining. Thus, it possesses the potential to serve as the foundation model for downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation, which will revolutionize the technical form of recommender system towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several recommendation benchmarks, we conduct experiments to show the effectiveness of our generative approach. We will release our prompts and pretrained P5 language model to help advance future research on Recommendation as Language Processing (RLP) and Personalized Foundation Models.

  Access Paper or Ask Questions

A Survey on Reinforcement Learning for Recommender Systems

Sep 22, 2021
Yuanguo Lin, Yong Liu, Fan Lin, Pengcheng Wu, Wenhua Zeng, Chunyan Miao

Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.

* 25 pages, 4 figures 

  Access Paper or Ask Questions

Link Prediction Approach to Recommender Systems

Feb 18, 2021
T. Jaya Lakshmi, S. Durga Bhavani

The problem of recommender system is very popular with myriad available solutions. A novel approach that uses the link prediction problem in social networks has been proposed in the literature that model the typical user-item information as a bipartite network in which link prediction would actually mean recommending an item to a user. The standard recommender system methods suffer from the problems of sparsity and scalability. Since link prediction measures involve computations pertaining to small neighborhoods in the network, this approach would lead to a scalable solution to recommendation. One of the issues in this conversion is that link prediction problem is modelled as a binary classification task whereas the problem of recommender systems is solved as a regression task in which the rating of the link is to be predicted. We overcome this issue by predicting top k links as recommendations with high ratings without predicting the actual rating. Our work extends similar approaches in the literature by focusing on exploiting the probabilistic measures for link prediction. Moreover, in the proposed approach, prediction measures that utilize temporal information available on the links prove to be more effective in improving the accuracy of prediction. This approach is evaluated on the benchmark 'Movielens' dataset. We show that the usage of temporal probabilistic measures helps in improving the quality of recommendations. Temporal random-walk based measure T_Flow improves recommendation accuracy by 4% and Temporal cooccurrence probability measure improves prediction accuracy by 10% over item-based collaborative filtering method in terms of AUROC score.

* Preprint 

  Access Paper or Ask Questions

Attribute-aware Explainable Complementary Clothing Recommendation

Jul 04, 2021
Yang Li, Tong Chen, Zi Huang

Modelling mix-and-match relationships among fashion items has become increasingly demanding yet challenging for modern E-commerce recommender systems. When performing clothes matching, most existing approaches leverage the latent visual features extracted from fashion item images for compatibility modelling, which lacks explainability of generated matching results and can hardly convince users of the recommendations. Though recent methods start to incorporate pre-defined attribute information (e.g., colour, style, length, etc.) for learning item representations and improving the model interpretability, their utilisation of attribute information is still mainly reserved for enhancing the learned item representations and generating explanations via post-processing. As a result, this creates a severe bottleneck when we are trying to advance the recommendation accuracy and generating fine-grained explanations since the explicit attributes have only loose connections to the actual recommendation process. This work aims to tackle the explainability challenge in fashion recommendation tasks by proposing a novel Attribute-aware Fashion Recommender (AFRec). Specifically, AFRec recommender assesses the outfit compatibility by explicitly leveraging the extracted attribute-level representations from each item's visual feature. The attributes serve as the bridge between two fashion items, where we quantify the affinity of a pair of items through the learned compatibility between their attributes. Extensive experiments have demonstrated that, by making full use of the explicit attributes in the recommendation process, AFRec is able to achieve state-of-the-art recommendation accuracy and generate intuitive explanations at the same time.

  Access Paper or Ask Questions

Quantitative analysis of Matthew effect and sparsity problem of recommender systems

Sep 24, 2019
Hao Wang, Zonghu Wang, Weishi Zhang

Recommender systems have received great commercial success. Recommendation has been used widely in areas such as e-commerce, online music FM, online news portal, etc. However, several problems related to input data structure pose serious challenge to recommender system performance. Two of these problems are Matthew effect and sparsity problem. Matthew effect heavily skews recommender system output towards popular items. Data sparsity problem directly affects the coverage of recommendation result. Collaborative filtering is a simple benchmark ubiquitously adopted in the industry as the baseline for recommender system design. Understanding the underlying mechanism of collaborative filtering is crucial for further optimization. In this paper, we do a thorough quantitative analysis on Matthew effect and sparsity problem in the particular context setting of collaborative filtering. We compare the underlying mechanism of user-based and item-based collaborative filtering and give insight to industrial recommender system builders.

  Access Paper or Ask Questions

Next-item Recommendations in Short Sessions

Jul 20, 2021
Wenzhuo Song, Shoujin Wang, Yan Wang, Shengsheng Wang

The changing preferences of users towards items trigger the emergence of session-based recommender systems (SBRSs), which aim to model the dynamic preferences of users for next-item recommendations. However, most of the existing studies on SBRSs are based on long sessions only for recommendations, ignoring short sessions, though short sessions, in fact, account for a large proportion in most of the real-world datasets. As a result, the applicability of existing SBRSs solutions is greatly reduced. In a short session, quite limited contextual information is available, making the next-item recommendation very challenging. To this end, in this paper, inspired by the success of few-shot learning (FSL) in effectively learning a model with limited instances, we formulate the next-item recommendation as an FSL problem. Accordingly, following the basic idea of a representative approach for FSL, i.e., meta-learning, we devise an effective SBRS called INter-SEssion collaborative Recommender netTwork (INSERT) for next-item recommendations in short sessions. With the carefully devised local module and global module, INSERT is able to learn an optimal preference representation of the current user in a given short session. In particular, in the global module, a similar session retrieval network (SSRN) is designed to find out the sessions similar to the current short session from the historical sessions of both the current user and other users, respectively. The obtained similar sessions are then utilized to complement and optimize the preference representation learned from the current short session by the local module for more accurate next-item recommendations in this short session. Extensive experiments conducted on two real-world datasets demonstrate the superiority of our proposed INSERT over the state-of-the-art SBRSs when making next-item recommendations in short sessions.

* This paper has been accepted by ACM RecSys'21 

  Access Paper or Ask Questions

A Tech Hybrid-Recommendation Engine and Personalized Notification: An integrated tool to assist users through Recommendations (Project ATHENA)

Feb 13, 2022
Lordjette Leigh M. Lecaros, Concepcion L. Khan

Project ATHENA aims to develop an application to address information overload, primarily focused on Recommendation Systems (RSs) with the personalization and user experience design of a modern system. Two machine learning (ML) algorithms were used: (1) TF-IDF for Content-based filtering (CBF); (2) Classification with Matrix Factorization- Singular Value Decomposition(SVD) applied with Collaborative filtering (CF) and mean (normalization) for prediction accuracy of the CF. Data sampling in academic Research and Development of Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development (PCAARRD) e-Library and Project SARAI publications plus simulated data used as training sets to generate a recommendation of items that uses the three RS filtering (CF, CBF, and personalized version of item recommendations). Series of Testing and TAM performed and discussed. Findings allow users to engage in online information and quickly evaluate retrieved items produced by the application. Compatibility-testing (CoT) shows the application is compatible with all major browsers and mobile-friendly. Performance-testing (PT) recommended v-parameter specs and TAM evaluations results indicate strongly associated with overall positive feedback, thoroughly enough to address the information-overload problem as the core of the paper. A modular architecture presented addressing the information overload, primarily focused on RSs with the personalization and design of modern systems. Developers utilized Two ML algorithms and prototyped a simplified version of the architecture. Series of testing (CoT and PT) and evaluations with TAM were performed and discussed. Project ATHENA added a UX feature design of a modern system.

* 15 pages 

  Access Paper or Ask Questions

Exploring Lottery Ticket Hypothesis in Media Recommender Systems

Aug 02, 2021
Yanfang Wang, Yongduo Sui, Xiang Wang, Zhenguang Liu, Xiangnan He

Media recommender systems aim to capture users' preferences and provide precise personalized recommendation of media content. There are two critical components in the common paradigm of modern recommender models: (1) representation learning, which generates an embedding for each user and item; and (2) interaction modeling, which fits user preferences towards items based on their representations. Despite of great success, when a great amount of users and items exist, it usually needs to create, store, and optimize a huge embedding table, where the scale of model parameters easily reach millions or even larger. Hence, it naturally raises questions about the heavy recommender models: Do we really need such large-scale parameters? We get inspirations from the recently proposed lottery ticket hypothesis (LTH), which argues that the dense and over-parameterized model contains a much smaller and sparser sub-model that can reach comparable performance to the full model. In this paper, we extend LTH to media recommender systems, aiming to find the winning tickets in deep recommender models. To the best of our knowledge, this is the first work to study LTH in media recommender systems. With MF and LightGCN as the backbone models, we found that there widely exist winning tickets in recommender models. On three media convergence datasets -- Yelp2018, TikTok and Kwai, the winning tickets can achieve comparable recommendation performance with only 29%~48%, 7%~10% and 3%~17% of parameters, respectively.

  Access Paper or Ask Questions

Contrastive Learning for Recommender System

Jan 05, 2021
Zhuang Liu, Yunpu Ma, Yuanxin Ouyang, Zhang Xiong

Recommender systems, which analyze users' preference patterns to suggest potential targets, are indispensable in today's society. Collaborative Filtering (CF) is the most popular recommendation model. Specifically, Graph Neural Network (GNN) has become a new state-of-the-art for CF. In the GNN-based recommender system, message dropout is usually used to alleviate the selection bias in the user-item bipartite graph. However, message dropout might deteriorate the recommender system's performance due to the randomness of dropping out the outgoing messages based on the user-item bipartite graph. To solve this problem, we propose a graph contrastive learning module for a general recommender system that learns the embeddings in a self-supervised manner and reduces the randomness of message dropout. Besides, many recommender systems optimize models with pairwise ranking objectives, such as the Bayesian Pairwise Ranking (BPR) based on a negative sampling strategy. However, BPR has the following problems: suboptimal sampling and sample bias. We introduce a new debiased contrastive loss to solve these problems, which provides sufficient negative samples and applies a bias correction probability to alleviate the sample bias. We integrate the proposed framework, including graph contrastive module and debiased contrastive module with several Matrix Factorization(MF) and GNN-based recommendation models. Experimental results on three public benchmarks demonstrate the effectiveness of our framework.

* arXiv admin note: text overlap with arXiv:1905.08108 by other authors 

  Access Paper or Ask Questions