What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
May 27, 2025
Abstract:Conversational recommender systems proactively query users with relevant "key terms" and leverage the feedback to elicit users' preferences for personalized recommendations. Conversational contextual bandits, a prevalent approach in this domain, aim to optimize preference learning by balancing exploitation and exploration. However, several limitations hinder their effectiveness in real-world scenarios. First, existing algorithms employ key term selection strategies with insufficient exploration, often failing to thoroughly probe users' preferences and resulting in suboptimal preference estimation. Second, current algorithms typically rely on deterministic rules to initiate conversations, causing unnecessary interactions when preferences are well-understood and missed opportunities when preferences are uncertain. To address these limitations, we propose three novel algorithms: CLiSK, CLiME, and CLiSK-ME. CLiSK introduces smoothed key term contexts to enhance exploration in preference learning, CLiME adaptively initiates conversations based on preference uncertainty, and CLiSK-ME integrates both techniques. We theoretically prove that all three algorithms achieve a tighter regret upper bound of $O(\sqrt{dT\log{T}})$ with respect to the time horizon $T$, improving upon existing methods. Additionally, we provide a matching lower bound $\Omega(\sqrt{dT})$ for conversational bandits, demonstrating that our algorithms are nearly minimax optimal. Extensive evaluations on both synthetic and real-world datasets show that our approaches achieve at least a 14.6% improvement in cumulative regret.
* Accepted at the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2025
Via

May 27, 2025
Abstract:Heterogeneous graph neural networks (HGNNs) have recently drawn increasing attention for modeling complex multi-relational data in domains such as recommendation, finance, and social networks. While existing research has been largely focused on enhancing HGNNs' predictive performance, their robustness and security, especially under backdoor attacks, remain underexplored. In this paper, we propose a novel Heterogeneous Backdoor Attack (HeteroBA) framework for node classification tasks on heterogeneous graphs. HeteroBA inserts carefully crafted trigger nodes with realistic features and targeted structural connections, leveraging attention-based and clustering-based strategies to select influential auxiliary nodes for effective trigger propagation, thereby causing the model to misclassify specific nodes into a target label while maintaining accuracy on clean data. Experimental results on three datasets and various HGNN architectures demonstrate that HeteroBA achieves high attack success rates with minimal impact on the clean accuracy. Our method sheds light on potential vulnerabilities in HGNNs and calls for more robust defenses against backdoor threats in multi-relational graph scenarios.
Via

May 27, 2025
Abstract:Fairness in federated learning has emerged as a rapidly growing area of research, with numerous works proposing formal definitions and algorithmic interventions. Yet, despite this technical progress, fairness in FL is often defined and evaluated in ways that abstract away from the sociotechnical contexts in which these systems are deployed. In this paper, we argue that existing approaches tend to optimize narrow system level metrics, such as performance parity or contribution-based rewards, while overlooking how harms arise throughout the FL lifecycle and how they impact diverse stakeholders. We support this claim through a critical analysis of the literature, based on a systematic annotation of papers for their fairness definitions, design decisions, evaluation practices, and motivating use cases. Our analysis reveals five recurring pitfalls: 1) fairness framed solely through the lens of server client architecture, 2) a mismatch between simulations and motivating use-cases and contexts, 3) definitions that conflate protecting the system with protecting its users, 4) interventions that target isolated stages of the lifecycle while neglecting upstream and downstream effects, 5) and a lack of multi-stakeholder alignment where multiple fairness definitions can be relevant at once. Building on these insights, we propose a harm centered framework that links fairness definitions to concrete risks and stakeholder vulnerabilities. We conclude with recommendations for more holistic, context-aware, and accountable fairness research in FL.
Via

May 27, 2025
Abstract:Recent years have witnessed extensive exploration of Large Language Models (LLMs) on the field of Recommender Systems (RS). There are currently two commonly used strategies to enable LLMs to have recommendation capabilities: 1) The "Guidance-Only" strategy uses in-context learning to exploit and amplify the inherent semantic understanding and item recommendation capabilities of LLMs; 2) The "Tuning-Only" strategy uses supervised fine-tuning (SFT) to fine-tune LLMs with the aim of fitting them to real recommendation data. However, neither of these strategies can effectively bridge the gap between the knowledge space of LLMs and recommendation, and their performance do not meet our expectations. To better enable LLMs to learn recommendation knowledge, we combine the advantages of the above two strategies and proposed a novel "Guidance+Tuning" method called Self-Optimized Fine-Tuning (SOFT), which adopts the idea of curriculum learning. It first employs self-distillation to construct an auxiliary easy-to-learn but meaningful dataset from a fine-tuned LLM. Then it further utilizes a self-adaptive curriculum scheduler to enable LLMs to gradually learn from simpler data (self-distilled data) to more challenging data (real RS data). Extensive experiments demonstrate that SOFT significantly enhances the recommendation accuracy (37.59\% on average) of LLM-based methods. The code is available via https://anonymous.4open.science/r/Self-Optimized-Fine-Tuning-264E
Via

May 27, 2025
Abstract:This study explores the integration of eXtreme Programming (XP) and the Cross-Industry Standard Process for Data Mining (CRISP-DM) in agile Data Science projects. We conducted a case study at the e-commerce company Elo7 to answer the research question: How can the agility of the XP method be integrated with CRISP-DM in Data Science projects? Data was collected through interviews and questionnaires with a Data Science team consisting of data scientists, ML engineers, and data product managers. The results show that 86% of the team frequently or always applies CRISP-DM, while 71% adopt XP practices in their projects. Furthermore, the study demonstrates that it is possible to combine CRISP-DM with XP in Data Science projects, providing a structured and collaborative approach. Finally, the study generated improvement recommendations for the company.
Via

May 27, 2025
Abstract:Current personalized recommender systems predominantly rely on static offline data for algorithm design and evaluation, significantly limiting their ability to capture long-term user preference evolution and social influence dynamics in real-world scenarios. To address this fundamental challenge, we propose a high-fidelity social simulation platform integrating human-like cognitive agents and dynamic social interactions to realistically simulate user behavior evolution under recommendation interventions. Specifically, the system comprises a population of Sim-User Agents, each equipped with a five-layer cognitive architecture that encapsulates key psychological mechanisms, including episodic memory, affective state transitions, adaptive preference learning, and dynamic trust-risk assessments. In particular, we innovatively introduce the Intimacy--Curiosity--Reciprocity--Risk (ICR2) motivational engine grounded in psychological and sociological theories, enabling more realistic user decision-making processes. Furthermore, we construct a multilayer heterogeneous social graph (GGBond Graph) supporting dynamic relational evolution, effectively modeling users' evolving social ties and trust dynamics based on interest similarity, personality alignment, and structural homophily. During system operation, agents autonomously respond to recommendations generated by typical recommender algorithms (e.g., Matrix Factorization, MultVAE, LightGCN), deciding whether to consume, rate, and share content while dynamically updating their internal states and social connections, thereby forming a stable, multi-round feedback loop. This innovative design transcends the limitations of traditional static datasets, providing a controlled, observable environment for evaluating long-term recommender effects.
Via

May 27, 2025
Abstract:Traditional photography composition approaches are dominated by 2D cropping-based methods. However, these methods fall short when scenes contain poorly arranged subjects. Professional photographers often employ perspective adjustment as a form of 3D recomposition, modifying the projected 2D relationships between subjects while maintaining their actual spatial positions to achieve better compositional balance. Inspired by this artistic practice, we propose photography perspective composition (PPC), extending beyond traditional cropping-based methods. However, implementing the PPC faces significant challenges: the scarcity of perspective transformation datasets and undefined assessment criteria for perspective quality. To address these challenges, we present three key contributions: (1) An automated framework for building PPC datasets through expert photographs. (2) A video generation approach that demonstrates the transformation process from suboptimal to optimal perspectives. (3) A perspective quality assessment (PQA) model constructed based on human performance. Our approach is concise and requires no additional prompt instructions or camera trajectories, helping and guiding ordinary users to enhance their composition skills.
Via

May 27, 2025
Abstract:Sequential recommendation is a popular paradigm in modern recommender systems. In particular, one challenging problem in this space is cross-domain sequential recommendation (CDSR), which aims to predict future behaviors given user interactions across multiple domains. Existing CDSR frameworks are mostly built on the self-attention transformer and seek to improve by explicitly injecting additional domain-specific components (e.g. domain-aware module blocks). While these additional components help, we argue they overlook the core self-attention module already present in the transformer, a naturally powerful tool to learn correlations among behaviors. In this work, we aim to improve the CDSR performance for simple models from a novel perspective of enhancing the self-attention. Specifically, we introduce a Pareto-optimal self-attention and formulate the cross-domain learning as a multi-objective problem, where we optimize the recommendation task while dynamically minimizing the cross-domain attention scores. Our approach automates knowledge transfer in CDSR (dubbed as AutoCDSR) -- it not only mitigates negative transfer but also encourages complementary knowledge exchange among auxiliary domains. Based on the idea, we further introduce AutoCDSR+, a more performant variant with slight additional cost. Our proposal is easy to implement and works as a plug-and-play module that can be incorporated into existing transformer-based recommenders. Besides flexibility, it is practical to deploy because it brings little extra computational overheads without heavy hyper-parameter tuning. AutoCDSR on average improves Recall@10 for SASRec and Bert4Rec by 9.8% and 16.0% and NDCG@10 by 12.0% and 16.7%, respectively. Code is available at https://github.com/snap-research/AutoCDSR.
* Accepted to KDD'25
Via

May 27, 2025
Abstract:As generative AI systems become widely adopted, they enable unprecedented creation levels of synthetic data across text, images, audio, and video modalities. While research has addressed the energy consumption of model training and inference, a critical sustainability challenge remains understudied: digital waste. This term refers to stored data that consumes resources without serving a specific (and/or immediate) purpose. This paper presents this terminology in the AI context and introduces digital waste as an ethical imperative within (generative) AI development, positioning environmental sustainability as core for responsible innovation. Drawing from established digital resource management approaches, we examine how other disciplines manage digital waste and identify transferable approaches for the AI community. We propose specific recommendations encompassing re-search directions, technical interventions, and cultural shifts to mitigate the environmental consequences of in-definite data storage. By expanding AI ethics beyond immediate concerns like bias and privacy to include inter-generational environmental justice, this work contributes to a more comprehensive ethical framework that considers the complete lifecycle impact of generative AI systems.
* 8 pages, submitted to AAAI/ACM Conference on AI, Ethics and Society
Via

May 27, 2025
Abstract:Despite advances in large language model capabilities in recent years, a large gap remains in their capabilities and safety performance for many languages beyond a relatively small handful of globally dominant languages. This paper provides researchers, policymakers and governance experts with an overview of key challenges to bridging the "language gap" in AI and minimizing safety risks across languages. We provide an analysis of why the language gap in AI exists and grows, and how it creates disparities in global AI safety. We identify barriers to address these challenges, and recommend how those working in policy and governance can help address safety concerns associated with the language gap by supporting multilingual dataset creation, transparency, and research.
Via
