What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Jun 06, 2025
Abstract:Time-series forecasting is an essential task with wide real-world applications across domains. While recent advances in deep learning have enabled time-series forecasting models with accurate predictions, there remains considerable debate over which architectures and design components, such as series decomposition or normalization, are most effective under varying conditions. Existing benchmarks primarily evaluate models at a high level, offering limited insight into why certain designs work better. To mitigate this gap, we propose TimeRecipe, a unified benchmarking framework that systematically evaluates time-series forecasting methods at the module level. TimeRecipe conducts over 10,000 experiments to assess the effectiveness of individual components across a diverse range of datasets, forecasting horizons, and task settings. Our results reveal that exhaustive exploration of the design space can yield models that outperform existing state-of-the-art methods and uncover meaningful intuitions linking specific design choices to forecasting scenarios. Furthermore, we release a practical toolkit within TimeRecipe that recommends suitable model architectures based on these empirical insights. The benchmark is available at: https://github.com/AdityaLab/TimeRecipe.
* 46 pages, 1 figure, 28 tables
Via

Jun 06, 2025
Abstract:Users of social media platforms based on recommendation systems (RecSys) (e.g. TikTok, X, YouTube) strategically interact with platform content to influence future recommendations. On some such platforms, users have been documented to form large-scale grassroots movements encouraging others to purposefully interact with algorithmically suppressed content in order to "boost" its recommendation; we term this behavior user altruism. To capture this behavior, we study a game between users and a RecSys, where users provide the RecSys (potentially manipulated) preferences over the contents available to them, and the RecSys -- limited by data and computation constraints -- creates a low-rank approximation preference matrix, and ultimately provides each user her (approximately) most-preferred item. We compare the users' social welfare under truthful preference reporting and under a class of strategies capturing user altruism. In our theoretical analysis, we provide sufficient conditions to ensure strict increases in user social welfare under user altruism, and provide an algorithm to find an effective altruistic strategy. Interestingly, we show that for commonly assumed recommender utility functions, effectively altruistic strategies also improve the utility of the RecSys! We show that our results are robust to several model misspecifications, thus strengthening our conclusions. Our theoretical analysis is complemented by empirical results of effective altruistic strategies on the GoodReads dataset, and an online survey on how real-world users behave altruistically in RecSys. Overall, our findings serve as a proof-of-concept of the reasons why traditional RecSys may incentivize users to form collectives and/or follow altruistic strategies when interacting with them.
Via

Jun 06, 2025
Abstract:Semantic ID-based recommendation models tokenize each item into a small number of discrete tokens that preserve specific semantics, leading to better performance, scalability, and memory efficiency. While recent models adopt a generative approach, they often suffer from inefficient inference due to the reliance on resource-intensive beam search and multiple forward passes through the neural sequence model. As a result, the length of semantic IDs is typically restricted (e.g. to just 4 tokens), limiting their expressiveness. To address these challenges, we propose RPG, a lightweight framework for semantic ID-based recommendation. The key idea is to produce unordered, long semantic IDs, allowing the model to predict all tokens in parallel. We train the model to predict each token independently using a multi-token prediction loss, directly integrating semantics into the learning objective. During inference, we construct a graph connecting similar semantic IDs and guide decoding to avoid generating invalid IDs. Experiments show that scaling up semantic ID length to 64 enables RPG to outperform generative baselines by an average of 12.6% on the NDCG@10, while also improving inference efficiency. Code is available at: https://github.com/facebookresearch/RPG_KDD2025.
* KDD 2025
Via

Jun 06, 2025
Abstract:Wheat management strategies play a critical role in determining yield. Traditional management decisions often rely on labour-intensive expert inspections, which are expensive, subjective and difficult to scale. Recently, Vision-Language Models (VLMs) have emerged as a promising solution to enable scalable, data-driven management support. However, due to a lack of domain-specific knowledge, directly applying VLMs to wheat management tasks results in poor quantification and reasoning capabilities, ultimately producing vague or even misleading management recommendations. In response, we propose WisWheat, a wheat-specific dataset with a three-layered design to enhance VLM performance on wheat management tasks: (1) a foundational pretraining dataset of 47,871 image-caption pairs for coarsely adapting VLMs to wheat morphology; (2) a quantitative dataset comprising 7,263 VQA-style image-question-answer triplets for quantitative trait measuring tasks; and (3) an Instruction Fine-tuning dataset with 4,888 samples targeting biotic and abiotic stress diagnosis and management plan for different phenological stages. Extensive experimental results demonstrate that fine-tuning open-source VLMs (e.g., Qwen2.5 7B) on our dataset leads to significant performance improvements. Specifically, the Qwen2.5 VL 7B fine-tuned on our wheat instruction dataset achieves accuracy scores of 79.2% and 84.6% on wheat stress and growth stage conversation tasks respectively, surpassing even general-purpose commercial models such as GPT-4o by a margin of 11.9% and 34.6%.
Via

Jun 06, 2025
Abstract:Recent large-scale reasoning models have achieved state-of-the-art performance on challenging mathematical benchmarks, yet the internal mechanisms underlying their success remain poorly understood. In this work, we introduce the notion of a reasoning graph, extracted by clustering hidden-state representations at each reasoning step, and systematically analyze three key graph-theoretic properties: cyclicity, diameter, and small-world index, across multiple tasks (GSM8K, MATH500, AIME 2024). Our findings reveal that distilled reasoning models (e.g., DeepSeek-R1-Distill-Qwen-32B) exhibit significantly more recurrent cycles (about 5 per sample), substantially larger graph diameters, and pronounced small-world characteristics (about 6x) compared to their base counterparts. Notably, these structural advantages grow with task difficulty and model capacity, with cycle detection peaking at the 14B scale and exploration diameter maximized in the 32B variant, correlating positively with accuracy. Furthermore, we show that supervised fine-tuning on an improved dataset systematically expands reasoning graph diameters in tandem with performance gains, offering concrete guidelines for dataset design aimed at boosting reasoning capabilities. By bridging theoretical insights into reasoning graph structures with practical recommendations for data construction, our work advances both the interpretability and the efficacy of large reasoning models.
Via

Jun 06, 2025
Abstract:In this work, we present LengClaro2023, a dataset of legal-administrative texts in Spanish. Based on the most frequently used procedures from the Spanish Social Security website, we have created for each text two simplified equivalents. The first version follows the recommendations provided by arText claro. The second version incorporates additional recommendations from plain language guidelines to explore further potential improvements in the system. The linguistic resource created in this work can be used for evaluating automatic text simplification (ATS) systems in Spanish.
* In this report, we present a part of the master thesis written by
Bel\'en Ag\"uera Marco in order to obtain the B.S. Language Analysis and
Processing at the University of the Basque Country (UPV/EHU), supervised by
Itziar Gonzalez-Dios
Via

Jun 06, 2025
Abstract:This work addresses a fundamental barrier in recommender systems: the inability to generalize across domains without extensive retraining. Traditional ID-based approaches fail entirely in cold-start and cross-domain scenarios where new users or items lack sufficient interaction history. Inspired by foundation models' cross-domain success, we develop a foundation model for sequential recommendation that achieves genuine zero-shot generalization capabilities. Our approach fundamentally departs from existing ID-based methods by deriving item representations exclusively from textual features. This enables immediate embedding of any new item without model retraining. We introduce unified item tokenization with Finite Scalar Quantization that transforms heterogeneous textual descriptions into standardized discrete tokens. This eliminates domain barriers that plague existing systems. Additionally, the framework features hybrid bidirectional-causal attention that captures both intra-item token coherence and inter-item sequential dependencies. An efficient catalog-aware beam search decoder enables real-time token-to-item mapping. Unlike conventional approaches confined to their training domains, RecGPT naturally bridges diverse recommendation contexts through its domain-invariant tokenization mechanism. Comprehensive evaluations across six datasets and industrial scenarios demonstrate consistent performance advantages.
Via

Jun 06, 2025
Abstract:The task of item-to-item (I2I) retrieval is to identify a set of relevant and highly engaging items based on a given trigger item. It is a crucial component in modern recommendation systems, where users' previously engaged items serve as trigger items to retrieve relevant content for future engagement. However, existing I2I retrieval models in industry are primarily built on co-engagement data and optimized using the recall measure, which overly emphasizes co-engagement patterns while failing to capture semantic relevance. This often leads to overfitting short-term co-engagement trends at the expense of long-term benefits such as discovering novel interests and promoting content diversity. To address this challenge, we propose MTMH, a Multi-Task and Multi-Head I2I retrieval model that achieves both high recall and semantic relevance. Our model consists of two key components: 1) a multi-task learning loss for formally optimizing the trade-off between recall and semantic relevance, and 2) a multi-head I2I retrieval architecture for retrieving both highly co-engaged and semantically relevant items. We evaluate MTMH using proprietary data from a commercial platform serving billions of users and demonstrate that it can improve recall by up to 14.4% and semantic relevance by up to 56.6% compared with prior state-of-the-art models. We also conduct live experiments to verify that MTMH can enhance both short-term consumption metrics and long-term user-experience-related metrics. Our work provides a principled approach for jointly optimizing I2I recall and semantic relevance, which has significant implications for improving the overall performance of recommendation systems.
* KDD 2025
Via

Jun 06, 2025
Abstract:Scientific recommender systems, such as Google Scholar and Web of Science, are essential tools for discovery. Search algorithms that power work through stigmergy, a collective intelligence mechanism that surfaces useful paths through repeated engagement. While generally effective, this ``rich-get-richer'' dynamic results in a small number of high-profile papers that dominate visibility. This essay argues argue that these algorithm over-reliance on popularity fosters intellectual homogeneity and exacerbates structural inequities, stifling innovative and diverse perspectives critical for scientific progress. We propose an overhaul of search platforms to incorporate user-specific calibration, allowing researchers to manually adjust the weights of factors like popularity, recency, and relevance. We also advise platform developers on how word embeddings and LLMs could be implemented in ways that increase user autonomy. While our suggestions are particularly pertinent to aligning recommender systems with scientific values, these ideas are broadly applicable to information access systems in general. Designing platforms that increase user autonomy is an important step toward more robust and dynamic information
Via

Jun 05, 2025
Abstract:We introduce ComfyUI-Copilot, a large language model-powered plugin designed to enhance the usability and efficiency of ComfyUI, an open-source platform for AI-driven art creation. Despite its flexibility and user-friendly interface, ComfyUI can present challenges to newcomers, including limited documentation, model misconfigurations, and the complexity of workflow design. ComfyUI-Copilot addresses these challenges by offering intelligent node and model recommendations, along with automated one-click workflow construction. At its core, the system employs a hierarchical multi-agent framework comprising a central assistant agent for task delegation and specialized worker agents for different usages, supported by our curated ComfyUI knowledge bases to streamline debugging and deployment. We validate the effectiveness of ComfyUI-Copilot through both offline quantitative evaluations and online user feedback, showing that it accurately recommends nodes and accelerates workflow development. Additionally, use cases illustrate that ComfyUI-Copilot lowers entry barriers for beginners and enhances workflow efficiency for experienced users. The ComfyUI-Copilot installation package and a demo video are available at https://github.com/AIDC-AI/ComfyUI-Copilot.
Via
