Abstract:Semantic ID-based recommendation models tokenize each item into a small number of discrete tokens that preserve specific semantics, leading to better performance, scalability, and memory efficiency. While recent models adopt a generative approach, they often suffer from inefficient inference due to the reliance on resource-intensive beam search and multiple forward passes through the neural sequence model. As a result, the length of semantic IDs is typically restricted (e.g. to just 4 tokens), limiting their expressiveness. To address these challenges, we propose RPG, a lightweight framework for semantic ID-based recommendation. The key idea is to produce unordered, long semantic IDs, allowing the model to predict all tokens in parallel. We train the model to predict each token independently using a multi-token prediction loss, directly integrating semantics into the learning objective. During inference, we construct a graph connecting similar semantic IDs and guide decoding to avoid generating invalid IDs. Experiments show that scaling up semantic ID length to 64 enables RPG to outperform generative baselines by an average of 12.6% on the NDCG@10, while also improving inference efficiency. Code is available at: https://github.com/facebookresearch/RPG_KDD2025.
Abstract:Searching for a related article based on a reference article is an integral part of scientific research. PubMed, like many academic search engines, has a "similar articles" feature that recommends articles relevant to the current article viewed by a user. Explaining recommended items can be of great utility to users, particularly in the literature search process. With more than a million biomedical papers being published each year, explaining the recommended similar articles would facilitate researchers and clinicians in searching for related articles. Nonetheless, the majority of current literature recommendation systems lack explanations for their suggestions. We employ a post hoc approach to explaining recommendations by identifying relevant tokens in the titles of similar articles. Our major contribution is building PubCLogs by repurposing 5.6 million pairs of coclicked articles from PubMed's user query logs. Using our PubCLogs dataset, we train the Highlight Similar Article Title (HSAT), a transformer-based model designed to select the most relevant parts of the title of a similar article, based on the title and abstract of a seed article. HSAT demonstrates strong performance in our empirical evaluations, achieving an F1 score of 91.72 percent on the PubCLogs test set, considerably outperforming several baselines including BM25 (70.62), MPNet (67.11), MedCPT (62.22), GPT-3.5 (46.00), and GPT-4 (64.89). Additional evaluations on a separate, manually annotated test set further verifies HSAT's performance. Moreover, participants of our user study indicate a preference for HSAT, due to its superior balance between conciseness and comprehensiveness. Our study suggests that repurposing user query logs of academic search engines can be a promising way to train state-of-the-art models for explaining literature recommendation.