for the Alzheimer's Disease Neuroimaging Initiative
Abstract:Recent progress in medical vision-language models (VLMs) has achieved strong performance on image-level text-centric tasks such as report generation and visual question answering (VQA). However, achieving fine-grained visual grounding and volumetric spatial reasoning in 3D medical VLMs remains challenging, particularly when aiming to unify these capabilities within a single, generalizable framework. To address this challenge, we proposed MedVL-SAM2, a unified 3D medical multimodal model that concurrently supports report generation, VQA, and multi-paradigm segmentation, including semantic, referring, and interactive segmentation. MedVL-SAM2 integrates image-level reasoning and pixel-level perception through a cohesive architecture tailored for 3D medical imaging, and incorporates a SAM2-based volumetric segmentation module to enable precise multi-granular spatial reasoning. The model is trained in a multi-stage pipeline: it is first pre-trained on a large-scale corpus of 3D CT image-text pairs to align volumetric visual features with radiology-language embeddings. It is then jointly optimized with both language-understanding and segmentation objectives using a comprehensive 3D CT segmentation dataset. This joint training enables flexible interaction via language, point, or box prompts, thereby unifying high-level visual reasoning with spatially precise localization. Our unified architecture delivers state-of-the-art performance across report generation, VQA, and multiple 3D segmentation tasks. Extensive analyses further show that the model provides reliable 3D visual grounding, controllable interactive segmentation, and robust cross-modal reasoning, demonstrating that high-level semantic reasoning and precise 3D localization can be jointly achieved within a unified 3D medical VLM.




Abstract:Machine unlearning aims to eliminate the influence of specific data from trained models to ensure privacy compliance. However, most existing methods assume full access to the original training dataset, which is often impractical. We address a more realistic yet challenging setting: few-shot zero-glance, where only a small subset of the retained data is available and the forget set is entirely inaccessible. We introduce GFOES, a novel framework comprising a Generative Feedback Network (GFN) and a two-phase fine-tuning procedure. GFN synthesises Optimal Erasure Samples (OES), which induce high loss on target classes, enabling the model to forget class-specific knowledge without access to the original forget data, while preserving performance on retained classes. The two-phase fine-tuning procedure enables aggressive forgetting in the first phase, followed by utility restoration in the second. Experiments on three image classification datasets demonstrate that GFOES achieves effective forgetting at both logit and representation levels, while maintaining strong performance using only 5% of the original data. Our framework offers a practical and scalable solution for privacy-preserving machine learning under data-constrained conditions.
Abstract:Long context inference scenarios have become increasingly important for large language models, yet they introduce significant computational latency. While prior research has optimized long-sequence inference through operators, model architectures, and system frameworks, tokenization remains an overlooked bottleneck. Existing parallel tokenization methods accelerate processing through text segmentation and multi-process tokenization, but they suffer from inconsistent results due to boundary artifacts that occur after merging. To address this, we propose LoPT, a novel Lossless Parallel Tokenization framework that ensures output identical to standard sequential tokenization. Our approach employs character-position-based matching and dynamic chunk length adjustment to align and merge tokenized segments accurately. Extensive experiments across diverse long-text datasets demonstrate that LoPT achieves significant speedup while guaranteeing lossless tokenization. We also provide theoretical proof of consistency and comprehensive analytical studies to validate the robustness of our method.
Abstract:Existing defence mechanisms have demonstrated significant effectiveness in mitigating rule-based Denial-of-Service (DoS) attacks, leveraging predefined signatures and static heuristics to identify and block malicious traffic. However, the emergence of AI-driven techniques presents new challenges to SDN security, potentially compromising the efficacy of existing defence mechanisms. In this paper, we introduce~AdaDoS, an adaptive attack model that disrupt network operations while evading detection by existing DoS-based detectors through adversarial reinforcement learning (RL). Specifically, AdaDoS models the problem as a competitive game between an attacker, whose goal is to obstruct network traffic without being detected, and a detector, which aims to identify malicious traffic. AdaDoS can solve this game by dynamically adjusting its attack strategy based on feedback from the SDN and the detector. Additionally, recognising that attackers typically have less information than defenders, AdaDoS formulates the DoS-like attack as a partially observed Markov decision process (POMDP), with the attacker having access only to delay information between attacker and victim nodes. We address this challenge with a novel reciprocal learning module, where the student agent, with limited observations, enhances its performance by learning from the teacher agent, who has full observational capabilities in the SDN environment. AdaDoS represents the first application of RL to develop DoS-like attack sequences, capable of adaptively evading both machine learning-based and rule-based DoS-like attack detectors.
Abstract:Accurate and generalizable blood pressure (BP) estimation is vital for the early detection and management of cardiovascular diseases. In this study, we enforce subject-level data splitting on a public multi-wavelength photoplethysmography (PPG) dataset and propose a generalizable BP estimation framework based on curriculum-adversarial learning. Our approach combines curriculum learning, which transitions from hypertension classification to BP regression, with domain-adversarial training that confuses subject identity to encourage the learning of subject-invariant features. Experiments show that multi-channel fusion consistently outperforms single-channel models. On the four-wavelength PPG dataset, our method achieves strong performance under strict subject-level splitting, with mean absolute errors (MAE) of 14.2mmHg for systolic blood pressure (SBP) and 6.4mmHg for diastolic blood pressure (DBP). Additionally, ablation studies validate the effectiveness of both the curriculum and adversarial components. These results highlight the potential of leveraging complementary information in multi-wavelength PPG and curriculum-adversarial strategies for accurate and robust BP estimation.
Abstract:Wearable photoplethysmography (PPG) is embedded in billions of devices, yet its optical waveform is easily corrupted by motion, perfusion loss, and ambient light, jeopardizing downstream cardiometric analytics. Existing signal-quality assessment (SQA) methods rely either on brittle heuristics or on data-hungry supervised models. We introduce the first fully unsupervised SQA pipeline for wrist PPG. Stage 1 trains a contrastive 1-D ResNet-18 on 276 h of raw, unlabeled data from heterogeneous sources (varying in device and sampling frequency), yielding optical-emitter- and motion-invariant embeddings (i.e., the learned representation is stable across differences in LED wavelength, drive intensity, and device optics, as well as wrist motion). Stage 2 converts each 512-D encoder embedding into a 4-D topological signature via persistent homology (PH) and clusters these signatures with HDBSCAN. To produce a binary signal-quality index (SQI), the acceptable PPG signals are represented by the densest cluster while the remaining clusters are assumed to mainly contain poor-quality PPG signals. Without re-tuning, the SQI attains Silhouette, Davies-Bouldin, and Calinski-Harabasz scores of 0.72, 0.34, and 6173, respectively, on a stratified sample of 10,000 windows. In this study, we propose a hybrid self-supervised-learning--topological-data-analysis (SSL--TDA) framework that offers a drop-in, scalable, cross-device quality gate for PPG signals.
Abstract:Blood oxygen saturation (SpO2) is a vital marker for healthcare monitoring. Traditional SpO2 estimation methods often rely on complex clinical calibration, making them unsuitable for low-power, wearable applications. In this paper, we propose a transfer learning-based framework for the rapid adaptation of SpO2 estimation to energy-efficient wearable devices using low-sampling-rate (25Hz) dual-channel photoplethysmography (PPG). We first pretrain a bidirectional Long Short-Term Memory (BiLSTM) model with self-attention on a public clinical dataset, then fine-tune it using data collected from our wearable We-Be band and an FDA-approved reference pulse oximeter. Experimental results show that our approach achieves a mean absolute error (MAE) of 2.967% on the public dataset and 2.624% on the private dataset, significantly outperforming traditional calibration and non-transferred machine learning baselines. Moreover, using 25Hz PPG reduces power consumption by 40% compared to 100Hz, excluding baseline draw. Our method also attains an MAE of 3.284% in instantaneous SpO2 prediction, effectively capturing rapid fluctuations. These results demonstrate the rapid adaptation of accurate, low-power SpO2 monitoring on wearable devices without the need for clinical calibration.




Abstract:Accurate quantification of tau pathology via tau positron emission tomography (PET) scan is crucial for diagnosing and monitoring Alzheimer's disease (AD). However, the high cost and limited availability of tau PET restrict its widespread use. In contrast, structural magnetic resonance imaging (MRI) and plasma-based biomarkers provide non-invasive and widely available complementary information related to brain anatomy and disease progression. In this work, we propose a text-guided 3D diffusion model for 3D tau PET image synthesis, leveraging multimodal conditions from both structural MRI and plasma measurement. Specifically, the textual prompt is from the plasma p-tau217 measurement, which is a key indicator of AD progression, while MRI provides anatomical structure constraints. The proposed framework is trained and evaluated using clinical AV1451 tau PET data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results demonstrate that our approach can generate realistic, clinically meaningful 3D tau PET across a range of disease stages. The proposed framework can help perform tau PET data augmentation under different settings, provide a non-invasive, cost-effective alternative for visualizing tau pathology, and support the simulation of disease progression under varying plasma biomarker levels and cognitive conditions.
Abstract:As deep spatio-temporal neural networks are increasingly utilised in urban computing contexts, the deployment of such methods can have a direct impact on users of critical urban infrastructure, such as public transport, emergency services, and traffic management systems. While many spatio-temporal methods focus on improving accuracy, fairness has recently gained attention due to growing evidence that biased predictions in spatio-temporal applications can disproportionately disadvantage certain demographic or geographic groups, thereby reinforcing existing socioeconomic inequalities and undermining the ethical deployment of AI in public services. In this paper, we propose a novel framework, FairDRL-ST, based on disentangled representation learning, to address fairness concerns in spatio-temporal prediction, with a particular focus on mobility demand forecasting. By leveraging adversarial learning and disentangled representation learning, our framework learns to separate attributes that contain sensitive information. Unlike existing methods that enforce fairness through supervised learning, which may lead to overcompensation and degraded performance, our framework achieves fairness in an unsupervised manner with minimal performance loss. We apply our framework to real-world urban mobility datasets and demonstrate its ability to close fairness gaps while delivering competitive predictive performance compared to state-of-the-art fairness-aware methods.
Abstract:Semantic ID-based recommendation models tokenize each item into a small number of discrete tokens that preserve specific semantics, leading to better performance, scalability, and memory efficiency. While recent models adopt a generative approach, they often suffer from inefficient inference due to the reliance on resource-intensive beam search and multiple forward passes through the neural sequence model. As a result, the length of semantic IDs is typically restricted (e.g. to just 4 tokens), limiting their expressiveness. To address these challenges, we propose RPG, a lightweight framework for semantic ID-based recommendation. The key idea is to produce unordered, long semantic IDs, allowing the model to predict all tokens in parallel. We train the model to predict each token independently using a multi-token prediction loss, directly integrating semantics into the learning objective. During inference, we construct a graph connecting similar semantic IDs and guide decoding to avoid generating invalid IDs. Experiments show that scaling up semantic ID length to 64 enables RPG to outperform generative baselines by an average of 12.6% on the NDCG@10, while also improving inference efficiency. Code is available at: https://github.com/facebookresearch/RPG_KDD2025.