Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

Improving Cross-Domain Performance for Relation Extraction via Dependency Prediction and Information Flow Control

Jul 07, 2019
Amir Pouran Ben Veyseh, Thien Huu Nguyen, Dejing Dou

Relation Extraction (RE) is one of the fundamental tasks in Information Extraction and Natural Language Processing. Dependency trees have been shown to be a very useful source of information for this task. The current deep learning models for relation extraction has mainly exploited this dependency information by guiding their computation along the structures of the dependency trees. One potential problem with this approach is it might prevent the models from capturing important context information beyond syntactic structures and cause the poor cross-domain generalization. This paper introduces a novel method to use dependency trees in RE for deep learning models that jointly predicts dependency and semantics relations. We also propose a new mechanism to control the information flow in the model based on the input entity mentions. Our extensive experiments on benchmark datasets show that the proposed model outperforms the existing methods for RE significantly.


Logician: A Unified End-to-End Neural Approach for Open-Domain Information Extraction

Apr 29, 2019
Mingming Sun, Xu Li, Xin Wang, Miao Fan, Yue Feng, Ping Li

In this paper, we consider the problem of open information extraction (OIE) for extracting entity and relation level intermediate structures from sentences in open-domain. We focus on four types of valuable intermediate structures (Relation, Attribute, Description, and Concept), and propose a unified knowledge expression form, SAOKE, to express them. We publicly release a data set which contains more than forty thousand sentences and the corresponding facts in the SAOKE format labeled by crowd-sourcing. To our knowledge, this is the largest publicly available human labeled data set for open information extraction tasks. Using this labeled SAOKE data set, we train an end-to-end neural model using the sequenceto-sequence paradigm, called Logician, to transform sentences into facts. For each sentence, different to existing algorithms which generally focus on extracting each single fact without concerning other possible facts, Logician performs a global optimization over all possible involved facts, in which facts not only compete with each other to attract the attention of words, but also cooperate to share words. An experimental study on various types of open domain relation extraction tasks reveals the consistent superiority of Logician to other states-of-the-art algorithms. The experiments verify the reasonableness of SAOKE format, the valuableness of SAOKE data set, the effectiveness of the proposed Logician model, and the feasibility of the methodology to apply end-to-end learning paradigm on supervised data sets for the challenging tasks of open information extraction.


ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information

Jul 21, 2018
Zahra Shakeri Hossein Abad, Vincenzo Gervasi, Didar Zowghi, Ken Barker

Requirements elicitation requires extensive knowledge and deep understanding of the problem domain where the final system will be situated. However, in many software development projects, analysts are required to elicit the requirements from an unfamiliar domain, which often causes communication barriers between analysts and stakeholders. In this paper, we propose a requirements ELICitation Aid tool (ELICA) to help analysts better understand the target application domain by dynamic extraction and labeling of requirements-relevant knowledge. To extract the relevant terms, we leverage the flexibility and power of Weighted Finite State Transducers (WFSTs) in dynamic modeling of natural language processing tasks. In addition to the information conveyed through text, ELICA captures and processes non-linguistic information about the intention of speakers such as their confidence level, analytical tone, and emotions. The extracted information is made available to the analysts as a set of labeled snippets with highlighted relevant terms which can also be exported as an artifact of the Requirements Engineering (RE) process. The application and usefulness of ELICA are demonstrated through a case study. This study shows how pre-existing relevant information about the application domain and the information captured during an elicitation meeting, such as the conversation and stakeholders' intentions, can be captured and used to support analysts achieving their tasks.

* 2018 IEEE 26th International Requirements Engineering Conference Workshops 

Information Extraction with Character-level Neural Networks and Free Noisy Supervision

Jan 24, 2017
Philipp Meerkamp, Zhengyi Zhou

We present an architecture for information extraction from text that augments an existing parser with a character-level neural network. The network is trained using a measure of consistency of extracted data with existing databases as a form of noisy supervision. Our architecture combines the ability of constraint-based information extraction systems to easily incorporate domain knowledge and constraints with the ability of deep neural networks to leverage large amounts of data to learn complex features. Boosting the existing parser's precision, the system led to large improvements over a mature and highly tuned constraint-based production information extraction system used at Bloomberg for financial language text.


In Layman's Terms: Semi-Open Relation Extraction from Scientific Texts

May 26, 2020
Ruben Kruiper, Julian F. V. Vincent, Jessica Chen-Burger, Marc P. Y. Desmulliez, Ioannis Konstas

Information Extraction (IE) from scientific texts can be used to guide readers to the central information in scientific documents. But narrow IE systems extract only a fraction of the information captured, and Open IE systems do not perform well on the long and complex sentences encountered in scientific texts. In this work we combine the output of both types of systems to achieve Semi-Open Relation Extraction, a new task that we explore in the Biology domain. First, we present the Focused Open Biological Information Extraction (FOBIE) dataset and use FOBIE to train a state-of-the-art narrow scientific IE system to extract trade-off relations and arguments that are central to biology texts. We then run both the narrow IE system and a state-of-the-art Open IE system on a corpus of 10k open-access scientific biological texts. We show that a significant amount (65%) of erroneous and uninformative Open IE extractions can be filtered using narrow IE extractions. Furthermore, we show that the retained extractions are significantly more often informative to a reader.

* To be published in ACL 2020 conference proceedings. Updated dataset statistics, results unchanged 

OPIEC: An Open Information Extraction Corpus

Apr 28, 2019
Kiril Gashteovski, Sebastian Wanner, Sven Hertling, Samuel Broscheit, Rainer Gemulla

Open information extraction (OIE) systems extract relations and their arguments from natural language text in an unsupervised manner. The resulting extractions are a valuable resource for downstream tasks such as knowledge base construction, open question answering, or event schema induction. In this paper, we release, describe, and analyze an OIE corpus called OPIEC, which was extracted from the text of English Wikipedia. OPIEC complements the available OIE resources: It is the largest OIE corpus publicly available to date (over 340M triples) and contains valuable metadata such as provenance information, confidence scores, linguistic annotations, and semantic annotations including spatial and temporal information. We analyze the OPIEC corpus by comparing its content with knowledge bases such as DBpedia or YAGO, which are also based on Wikipedia. We found that most of the facts between entities present in OPIEC cannot be found in DBpedia and/or YAGO, that OIE facts often differ in the level of specificity compared to knowledge base facts, and that OIE open relations are generally highly polysemous. We believe that the OPIEC corpus is a valuable resource for future research on automated knowledge base construction.

* In Proceedings of the Conference of Automatic Knowledge Base Construction (AKBC) 2019 
* In Proceedings of the Conference of Automatic Knowledge Base Construction (AKBC) 2019 

A framework for information extraction from tables in biomedical literature

Feb 26, 2019
Nikola Milosevic, Cassie Gregson, Robert Hernandez, Goran Nenadic

The scientific literature is growing exponentially, and professionals are no more able to cope with the current amount of publications. Text mining provided in the past methods to retrieve and extract information from text; however, most of these approaches ignored tables and figures. The research done in mining table data still does not have an integrated approach for mining that would consider all complexities and challenges of a table. Our research is examining the methods for extracting numerical (number of patients, age, gender distribution) and textual (adverse reactions) information from tables in the clinical literature. We present a requirement analysis template and an integral methodology for information extraction from tables in clinical domain that contains 7 steps: (1) table detection, (2) functional processing, (3) structural processing, (4) semantic tagging, (5) pragmatic processing, (6) cell selection and (7) syntactic processing and extraction. Our approach performed with the F-measure ranged between 82 and 92%, depending on the variable, task and its complexity.

* 2019, International Journal on Document Analysis and Recognition (IJDAR) 
* 24 pages 

A Survey on Temporal Reasoning for Temporal Information Extraction from Text (Extended Abstract)

May 15, 2020
Artuur Leeuwenberg, Marie-Francine Moens

Time is deeply woven into how people perceive, and communicate about the world. Almost unconsciously, we provide our language utterances with temporal cues, like verb tenses, and we can hardly produce sentences without such cues. Extracting temporal cues from text, and constructing a global temporal view about the order of described events is a major challenge of automatic natural language understanding. Temporal reasoning, the process of combining different temporal cues into a coherent temporal view, plays a central role in temporal information extraction. This article presents a comprehensive survey of the research from the past decades on temporal reasoning for automatic temporal information extraction from text, providing a case study on the integration of symbolic reasoning with machine learning-based information extraction systems.

* Extended abstract of a JAIR article, which is to appear in the proceedings of IJCAI 2020 (the copyright of this abstract is held by IJCAI 2020)