Abstract:The brain age is a key indicator of brain health. While electroencephalography (EEG) is a practical tool for this task, existing models struggle with the common challenge of imperfect medical data, such as learning a ``normal'' baseline from weakly supervised, healthy-only cohorts. This is a critical anomaly detection task for identifying disease, but standard models are often black boxes lacking an interpretable structure. We propose EVA-Net, a novel framework that recasts brain age as an interpretable anomaly detection problem. EVA-Net uses an efficient, sparsified-attention Transformer to model long EEG sequences. To handle noise and variability in imperfect data, it employs a Variational Information Bottleneck to learn a robust, compressed representation. For interpretability, this representation is aligned to a continuous prototype network that explicitly learns the normative healthy aging manifold. Trained on 1297 healthy subjects, EVA-Net achieves state-of-the-art accuracy. We validated its anomaly detection capabilities on an unseen cohort of 27 MCI and AD patients. This pathological group showed significantly higher brain-age gaps and a novel Prototype Alignment Error, confirming their deviation from the healthy manifold. EVA-Net provides an interpretable framework for healthcare intelligence using imperfect medical data.
Abstract:The large-scale integration of renewable energy and power electronic devices has increased the complexity of power system stability, making transient stability assessment more challenging. Conventional methods are limited in both accuracy and computational efficiency. To address these challenges, this paper proposes MoE-GraphSAGE, a graph neural network framework based on the MoE for unified TAS and TVS assessment. The framework leverages GraphSAGE to capture the power grid's spatiotemporal topological features and employs multi-expert networks with a gating mechanism to model distinct instability modes jointly. Experimental results on the IEEE 39-bus system demonstrate that MoE-GraphSAGE achieves superior accuracy and efficiency, offering an effective solution for online multi-task transient stability assessment in complex power systems.
Abstract:Recent evidence suggests that modeling higher-order interactions (HOIs) in functional magnetic resonance imaging (fMRI) data can enhance the diagnostic accuracy of machine learning systems. However, effectively extracting and utilizing HOIs remains a significant challenge. In this work, we propose MvHo-IB, a novel multi-view learning framework that integrates both pairwise interactions and HOIs for diagnostic decision-making, while automatically compressing task-irrelevant redundant information. MvHo-IB introduces several key innovations: (1) a principled method that combines O-information from information theory with a matrix-based Renyi alpha-order entropy estimator to quantify and extract HOIs, (2) a purpose-built Brain3DCNN encoder to effectively utilize these interactions, and (3) a new multi-view learning information bottleneck objective to enhance representation learning. Experiments on three benchmark fMRI datasets demonstrate that MvHo-IB achieves state-of-the-art performance, significantly outperforming previous methods, including recent hypergraph-based techniques. The implementation of MvHo-IB is available at https://github.com/zky04/MvHo-IB.