Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Image To Image Translation": models, code, and papers

MRI Cross-Modality NeuroImage-to-NeuroImage Translation

Sep 11, 2018
Qianye Yang, Nannan Li, Zixu Zhao, Xingyu Fan, Eric I-Chao Chang, Yan Xu

We present a cross-modality generation framework that learns to generate translated modalities from given modalities in MR images without real acquisition. Our proposed method performs NeuroImage-to-NeuroImage translation (abbreviated as N2N) by means of a deep learning model that leverages conditional generative adversarial networks (cGANs). Our framework jointly exploits the low-level features (pixel-wise information) and high-level representations (e.g. brain tumors, brain structure like gray matter, etc.) between cross modalities which are important for resolving the challenging complexity in brain structures. Our framework can serve as an auxiliary method in clinical diagnosis and has great application potential. Based on our proposed framework, we first propose a method for cross-modality registration by fusing the deformation fields to adopt the cross-modality information from translated modalities. Second, we propose an approach for MRI segmentation, translated multichannel segmentation (TMS), where given modalities, along with translated modalities, are segmented by fully convolutional networks (FCN) in a multichannel manner. Both of these two methods successfully adopt the cross-modality information to improve the performance without adding any extra data. Experiments demonstrate that our proposed framework advances the state-of-the-art on five brain MRI datasets. We also observe encouraging results in cross-modality registration and segmentation on some widely adopted brain datasets. Overall, our work can serve as an auxiliary method in clinical diagnosis and be applied to various tasks in medical fields. Keywords: image-to-image, cross-modality, registration, segmentation, brain MRI

* 46 pages, 16 figures 
Access Paper or Ask Questions

Towards End-to-End In-Image Neural Machine Translation

Oct 20, 2020
Elman Mansimov, Mitchell Stern, Mia Chen, Orhan Firat, Jakob Uszkoreit, Puneet Jain

In this paper, we offer a preliminary investigation into the task of in-image machine translation: transforming an image containing text in one language into an image containing the same text in another language. We propose an end-to-end neural model for this task inspired by recent approaches to neural machine translation, and demonstrate promising initial results based purely on pixel-level supervision. We then offer a quantitative and qualitative evaluation of our system outputs and discuss some common failure modes. Finally, we conclude with directions for future work.

* Accepted as an oral presentation at EMNLP, NLP Beyond Text workshop, 2020 
Access Paper or Ask Questions

Image-to-Image Translation with Text Guidance

Feb 12, 2020
Bowen Li, Xiaojuan Qi, Philip H. S. Torr, Thomas Lukasiewicz

The goal of this paper is to embed controllable factors, i.e., natural language descriptions, into image-to-image translation with generative adversarial networks, which allows text descriptions to determine the visual attributes of synthetic images. We propose four key components: (1) the implementation of part-of-speech tagging to filter out non-semantic words in the given description, (2) the adoption of an affine combination module to effectively fuse different modality text and image features, (3) a novel refined multi-stage architecture to strengthen the differential ability of discriminators and the rectification ability of generators, and (4) a new structure loss to further improve discriminators to better distinguish real and synthetic images. Extensive experiments on the COCO dataset demonstrate that our method has a superior performance on both visual realism and semantic consistency with given descriptions.

Access Paper or Ask Questions

StEP: Style-based Encoder Pre-training for Multi-modal Image Synthesis

Apr 14, 2021
Moustafa Meshry, Yixuan Ren, Larry S Davis, Abhinav Shrivastava

We propose a novel approach for multi-modal Image-to-image (I2I) translation. To tackle the one-to-many relationship between input and output domains, previous works use complex training objectives to learn a latent embedding, jointly with the generator, that models the variability of the output domain. In contrast, we directly model the style variability of images, independent of the image synthesis task. Specifically, we pre-train a generic style encoder using a novel proxy task to learn an embedding of images, from arbitrary domains, into a low-dimensional style latent space. The learned latent space introduces several advantages over previous traditional approaches to multi-modal I2I translation. First, it is not dependent on the target dataset, and generalizes well across multiple domains. Second, it learns a more powerful and expressive latent space, which improves the fidelity of style capture and transfer. The proposed style pre-training also simplifies the training objective and speeds up the training significantly. Furthermore, we provide a detailed study of the contribution of different loss terms to the task of multi-modal I2I translation, and propose a simple alternative to VAEs to enable sampling from unconstrained latent spaces. Finally, we achieve state-of-the-art results on six challenging benchmarks with a simple training objective that includes only a GAN loss and a reconstruction loss.

* IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021 
Access Paper or Ask Questions

MR-Contrast-Aware Image-to-Image Translations with Generative Adversarial Networks

Apr 03, 2021
Jonas Denck, Jens Guehring, Andreas Maier, Eva Rothgang

Purpose A Magnetic Resonance Imaging (MRI) exam typically consists of several sequences that yield different image contrasts. Each sequence is parameterized through multiple acquisition parameters that influence image contrast, signal-to-noise ratio, acquisition time, and/or resolution. Depending on the clinical indication, different contrasts are required by the radiologist to make a diagnosis. As MR sequence acquisition is time consuming and acquired images may be corrupted due to motion, a method to synthesize MR images with adjustable contrast properties is required. Methods Therefore, we trained an image-to-image generative adversarial network conditioned on the MR acquisition parameters repetition time and echo time. Our approach is motivated by style transfer networks, whereas the "style" for an image is explicitly given in our case, as it is determined by the MR acquisition parameters our network is conditioned on. Results This enables us to synthesize MR images with adjustable image contrast. We evaluated our approach on the fastMRI dataset, a large set of publicly available MR knee images, and show that our method outperforms a benchmark pix2pix approach in the translation of non-fat-saturated MR images to fat-saturated images. Our approach yields a peak signal-to-noise ratio and structural similarity of 24.48 and 0.66, surpassing the pix2pix benchmark model significantly. Conclusion Our model is the first that enables fine-tuned contrast synthesis, which can be used to synthesize missing MR contrasts or as a data augmentation technique for AI training in MRI.

Access Paper or Ask Questions

Semi-supervised learning of images with strong rotational disorder: assembling nanoparticle libraries

May 24, 2021
Maxim Ziatdinov, Muammer Yusuf Yaman, Yongtao Liu, David Ginger, Sergei V. Kalinin

The proliferation of optical, electron, and scanning probe microscopies gives rise to large volumes of imaging data of objects as diversified as cells, bacteria, pollen, to nanoparticles and atoms and molecules. In most cases, the experimental data streams contain images having arbitrary rotations and translations within the image. At the same time, for many cases, small amounts of labeled data are available in the form of prior published results, image collections, and catalogs, or even theoretical models. Here we develop an approach that allows generalizing from a small subset of labeled data with a weak orientational disorder to a large unlabeled dataset with a much stronger orientational (and positional) disorder, i.e., it performs a classification of image data given a small number of examples even in the presence of a distribution shift between the labeled and unlabeled parts. This approach is based on the semi-supervised rotationally invariant variational autoencoder (ss-rVAE) model consisting of the encoder-decoder "block" that learns a rotationally (and translationally) invariant continuous latent representation of data and a classifier that encodes data into a finite number of discrete classes. The classifier part of the trained ss-rVAE inherits the rotational (and translational) invariances and can be deployed independently of the other parts of the model. The performance of the ss-rVAE is illustrated using the synthetic data sets with known factors of variation. We further demonstrate its application for experimental data sets of nanoparticles, creating nanoparticle libraries and disentangling the representations defining the physical factors of variation in the data. The code reproducing the results is available at

Access Paper or Ask Questions

Medical Image Generation using Generative Adversarial Networks

May 19, 2020
Nripendra Kumar Singh, Khalid Raza

Generative adversarial networks (GANs) are unsupervised Deep Learning approach in the computer vision community which has gained significant attention from the last few years in identifying the internal structure of multimodal medical imaging data. The adversarial network simultaneously generates realistic medical images and corresponding annotations, which proven to be useful in many cases such as image augmentation, image registration, medical image generation, image reconstruction, and image-to-image translation. These properties bring the attention of the researcher in the field of medical image analysis and we are witness of rapid adaption in many novel and traditional applications. This chapter provides state-of-the-art progress in GANs-based clinical application in medical image generation, and cross-modality synthesis. The various framework of GANs which gained popularity in the interpretation of medical images, such as Deep Convolutional GAN (DCGAN), Laplacian GAN (LAPGAN), pix2pix, CycleGAN, and unsupervised image-to-image translation model (UNIT), continue to improve their performance by incorporating additional hybrid architecture, has been discussed. Further, some of the recent applications of these frameworks for image reconstruction, and synthesis, and future research directions in the area have been covered.

* 19 pages, 3 figures, 5 tables 
Access Paper or Ask Questions

MIINet: An Image Quality Improvement Framework for Supporting Medical Diagnosis

Nov 28, 2020
Quan Huu Cap, Hitoshi Iyatomi, Atsushi Fukuda

Medical images have been indispensable and useful tools for supporting medical experts in making diagnostic decisions. However, taken medical images especially throat and endoscopy images are normally hazy, lack of focus, or uneven illumination. Thus, these could difficult the diagnosis process for doctors. In this paper, we propose MIINet, a novel image-to-image translation network for improving quality of medical images by unsupervised translating low-quality images to the high-quality clean version. Our MIINet is not only capable of generating high-resolution clean images, but also preserving the attributes of original images, making the diagnostic more favorable for doctors. Experiments on dehazing 100 practical throat images show that our MIINet largely improves the mean doctor opinion score (MDOS), which assesses the quality and the reproducibility of the images from the baseline of 2.36 to 4.11, while dehazed images by CycleGAN got lower score of 3.83. The MIINet is confirmed by three physicians to be satisfying in supporting throat disease diagnostic from original low-quality images.

* Accepted at the ICPR2020 Workshops 
Access Paper or Ask Questions

Lung image segmentation by generative adversarial networks

Jul 30, 2019
Jiaxin Cai, Hongfeng Zhu

Lung image segmentation plays an important role in computer-aid pulmonary diseases diagnosis and treatment. This paper proposed a lung image segmentation method by generative adversarial networks. We employed a variety of generative adversarial networks and use its capability of image translation to perform image segmentation. The generative adversarial networks was employed to translate the original lung image to the segmented image. The generative adversarial networks based segmentation method was test on real lung image data set. Experimental results shows that the proposed method is effective and outperform state-of-the art method.

Access Paper or Ask Questions

Anime-to-Real Clothing: Cosplay Costume Generation via Image-to-Image Translation

Aug 26, 2020
Koya Tango, Marie Katsurai, Hayato Maki, Ryosuke Goto

Cosplay has grown from its origins at fan conventions into a billion-dollar global dress phenomenon. To facilitate imagination and reinterpretation from animated images to real garments, this paper presents an automatic costume image generation method based on image-to-image translation. Cosplay items can be significantly diverse in their styles and shapes, and conventional methods cannot be directly applied to the wide variation in clothing images that are the focus of this study. To solve this problem, our method starts by collecting and preprocessing web images to prepare a cleaned, paired dataset of the anime and real domains. Then, we present a novel architecture for generative adversarial networks (GANs) to facilitate high-quality cosplay image generation. Our GAN consists of several effective techniques to fill the gap between the two domains and improve both the global and local consistency of generated images. Experiments demonstrated that, with two types of evaluation metrics, the proposed GAN achieves better performance than existing methods. We also showed that the images generated by the proposed method are more realistic than those generated by the conventional methods. Our codes and pretrained model are available on the web.

* 19 pages 
Access Paper or Ask Questions