Personalized federated learning (pFL) enables collaborative training among multiple clients to enhance the capability of customized local models. In pFL, clients may have heterogeneous (also known as non-IID) data, which poses a key challenge in how to decouple the data knowledge into generic knowledge for global sharing and personalized knowledge for preserving local personalization. A typical way of pFL focuses on label distribution skew, and they adopt a decoupling scheme where the model is split into a common feature extractor and two prediction heads (generic and personalized). However, such a decoupling scheme cannot solve the essential problem of feature skew heterogeneity, because a common feature extractor cannot decouple the generic and personalized features. Therefore, in this paper, we rethink the architecture decoupling design for feature-skew pFL and propose an effective pFL method called FediOS. In FediOS, we reformulate the decoupling into two feature extractors (generic and personalized) and one shared prediction head. Orthogonal projections are used for clients to map the generic features into one common subspace and scatter the personalized features into different subspaces to achieve decoupling for them. In addition, a shared prediction head is trained to balance the importance of generic and personalized features during inference. Extensive experiments on four vision datasets demonstrate our method reaches state-of-the-art pFL performances under feature skew heterogeneity.
Autonomous 3D part assembly is a challenging task in the areas of robotics and 3D computer vision. This task aims to assemble individual components into a complete shape without relying on predefined instructions. In this paper, we formulate this task from a novel generative perspective, introducing the Score-based 3D Part Assembly framework (Score-PA) for 3D part assembly. Knowing that score-based methods are typically time-consuming during the inference stage. To address this issue, we introduce a novel algorithm called the Fast Predictor-Corrector Sampler (FPC) that accelerates the sampling process within the framework. We employ various metrics to assess assembly quality and diversity, and our evaluation results demonstrate that our algorithm outperforms existing state-of-the-art approaches. We release our code at https://github.com/J-F-Cheng/Score-PA_Score-based-3D-Part-Assembly.
Social networks exhibit a complex graph-like structure due to the uncertainty surrounding potential collaborations among participants. Machine learning algorithms possess generic outstanding performance in multiple real-world prediction tasks. However, whether machine learning algorithms outperform specific algorithms designed for graph link prediction remains unknown to us. To address this issue, the Adamic-Adar Index (AAI), Jaccard Coefficient (JC) and common neighbour centrality (CNC) as representatives of graph-specific algorithms were applied to predict potential collaborations, utilizing data from volunteer activities during the Covid-19 pandemic in Shenzhen city, along with the classical machine learning algorithms such as random forest, support vector machine, and gradient boosting as single predictors and components of ensemble learning. This paper introduces that the AAI algorithm outperformed the traditional JC and CNC, and other machine learning algorithms in analyzing graph node attributes for this task.
Large-scale vision-language (V-L) models have demonstrated remarkable generalization capabilities for downstream tasks through prompt tuning. However, their performance suffers significantly in the presence of class imbalance, a common issue in real-world scenarios. In this paper, we investigate the effects of class imbalance on the generalization performance of V-L models and extend Neural Collapse phenomenon to these models, revealing the geometric reasons behind the impact of class imbalance on their generalization ability. To address this problem, we propose Neural Collapse based Prompt Tuning (NPT), a novel method that optimizes prompts so that both text and image features satisfy the same simplex ETF structure. NPT incorporates two regularization terms, geometric de-biasing and multi-modal isomorphism, to enhance the robustness of V-L models under class imbalance conditions while maintaining their generalization capabilities. Our comprehensive experiments show that NPT outperforms existing prompt learning techniques across 11 diverse image recognition datasets, achieving an absolute average gain of 2.63\% for novel classes and 2.47\% for harmonic mean when facing imbalanced data.
We introduce a new problem in unsupervised domain adaptation, termed as Generalized Universal Domain Adaptation (GUDA), which aims to achieve precise prediction of all target labels including unknown categories. GUDA bridges the gap between label distribution shift-based and label space mismatch-based variants, essentially categorizing them as a unified problem, guiding to a comprehensive framework for thoroughly solving all the variants. The key challenge of GUDA is developing and identifying novel target categories while estimating the target label distribution. To address this problem, we take advantage of the powerful exploration capability of generative flow networks and propose an active domain adaptation algorithm named GFlowDA, which selects diverse samples with probabilities proportional to a reward function. To enhance the exploration capability and effectively perceive the target label distribution, we tailor the states and rewards, and introduce an efficient solution for parent exploration and state transition. We also propose a training paradigm for GUDA called Generalized Universal Adversarial Network (GUAN), which involves collaborative optimization between GUAN and GFlowNet. Theoretical analysis highlights the importance of exploration, and extensive experiments on benchmark datasets demonstrate the superiority of GFlowDA.
Data valuation using Shapley value has emerged as a prevalent research domain in machine learning applications. However, it is a challenge to address the role of order in data cooperation as most research lacks such discussion. To tackle this problem, this paper studies the definition of the partial ordinal Shapley value by group theory in abstract algebra. Besides, since the calculation of the partial ordinal Shapley value requires exponential time, this paper also gives three algorithms for approximating the results. The Truncated Monte Carlo algorithm is derived from the classic Shapley value approximation algorithm. The Classification Monte Carlo algorithm and the Classification Truncated Monte Carlo algorithm are based on the fact that the data points in the same class provide similar information, then we can accelerate the calculation by leaving out some data points in each class.
Universal domain adaptation (UniDA) aims to transfer knowledge from the source domain to the target domain without any prior knowledge about the label set. The challenge lies in how to determine whether the target samples belong to common categories. The mainstream methods make judgments based on the sample features, which overemphasizes global information while ignoring the most crucial local objects in the image, resulting in limited accuracy. To address this issue, we propose a Universal Attention Matching (UniAM) framework by exploiting the self-attention mechanism in vision transformer to capture the crucial object information. The proposed framework introduces a novel Compressive Attention Matching (CAM) approach to explore the core information by compressively representing attentions. Furthermore, CAM incorporates a residual-based measurement to determine the sample commonness. By utilizing the measurement, UniAM achieves domain-wise and category-wise Common Feature Alignment (CFA) and Target Class Separation (TCS). Notably, UniAM is the first method utilizing the attention in vision transformer directly to perform classification tasks. Extensive experiments show that UniAM outperforms the current state-of-the-art methods on various benchmark datasets.
Federated learning (FL) is a popular way of edge computing that doesn't compromise users' privacy. Current FL paradigms assume that data only resides on the edge, while cloud servers only perform model averaging. However, in real-life situations such as recommender systems, the cloud server has the ability to store historical and interactive features. In this paper, our proposed Edge-Cloud Collaborative Knowledge Transfer Framework (ECCT) bridges the gap between the edge and cloud, enabling bi-directional knowledge transfer between both, sharing feature embeddings and prediction logits. ECCT consolidates various benefits, including enhancing personalization, enabling model heterogeneity, tolerating training asynchronization, and relieving communication burdens. Extensive experiments on public and industrial datasets demonstrate ECCT's effectiveness and potential for use in academia and industry.
Federated learning (FL) is a distributed framework for collaboratively training with privacy guarantees. In real-world scenarios, clients may have Non-IID data (local class imbalance) with poor annotation quality (label noise). The co-existence of label noise and class imbalance in FL's small local datasets renders conventional FL methods and noisy-label learning methods both ineffective. To address the challenges, we propose FedCNI without using an additional clean proxy dataset. It includes a noise-resilient local solver and a robust global aggregator. For the local solver, we design a more robust prototypical noise detector to distinguish noisy samples. Further to reduce the negative impact brought by the noisy samples, we devise a curriculum pseudo labeling method and a denoise Mixup training strategy. For the global aggregator, we propose a switching re-weighted aggregation method tailored to different learning periods. Extensive experiments demonstrate our method can substantially outperform state-of-the-art solutions in mix-heterogeneous FL environments.
Data heterogeneity is an inherent challenge that hinders the performance of federated learning (FL). Recent studies have identified the biased classifiers of local models as the key bottleneck. Previous attempts have used classifier calibration after FL training, but this approach falls short in improving the poor feature representations caused by training-time classifier biases. Resolving the classifier bias dilemma in FL requires a full understanding of the mechanisms behind the classifier. Recent advances in neural collapse have shown that the classifiers and feature prototypes under perfect training scenarios collapse into an optimal structure called simplex equiangular tight frame (ETF). Building on this neural collapse insight, we propose a solution to the FL's classifier bias problem by utilizing a synthetic and fixed ETF classifier during training. The optimal classifier structure enables all clients to learn unified and optimal feature representations even under extremely heterogeneous data. We devise several effective modules to better adapt the ETF structure in FL, achieving both high generalization and personalization. Extensive experiments demonstrate that our method achieves state-of-the-art performances on CIFAR-10, CIFAR-100, and Tiny-ImageNet.