Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.




Early detection of faults in district heating substations is imperative to reduce return temperatures and enhance efficiency. However, progress in this domain has been hindered by the limited availability of public, labelled datasets. We present an open source framework combining a service report validated public dataset, an evaluation method based on Accuracy, Reliability, and Earliness, and baseline results implemented with EnergyFaultDetector, an open source Python framework. The dataset contains time series of operational data from 93 substations across two manufacturers, annotated with a list of disturbances due to faults and maintenance actions, a set of normal-event examples and detailed fault metadata. We evaluate the EnergyFaultDetector using three metrics: Accuracy for recognising normal behaviour, an eventwise F Score for reliable fault detection with few false alarms, and Earliness for early detection. The framework also supports root cause analysis using ARCANA. We demonstrate three use cases to assist operators in interpreting anomalies and identifying underlying faults. The models achieve high normal-behaviour accuracy (0.98) and eventwise F-score (beta=0.5) of 0.83, detecting 60% of the faults in the dataset before the customer reports a problem, with an average lead time of 3.9 days. Integrating an open dataset, metrics, open source code, and baselines establishes a reproducible, fault centric benchmark with operationally meaningful evaluation, enabling consistent comparison and development of early fault detection and diagnosis methods for district heating substations.




We target passive dementia screening from short camera-facing talking head video, developing a facial temporal micro dynamics analysis for language free detection of early neuro cognitive change. This enables unscripted, in the wild video analysis at scale to capture natural facial behaviors, transferrable across devices, topics, and cultures without active intervention by clinicians or researchers during recording. Most existing resources prioritize speech or scripted interviews, limiting use outside clinics and coupling predictions to language and transcription. In contrast, we identify and analyze whether temporal facial kinematics, including blink dynamics, small mouth jaw motions, gaze variability, and subtle head adjustments, are sufficient for dementia screening without speech or text. By stabilizing facial signals, we convert these micro movements into interpretable facial microdynamic time series, smooth them, and summarize short windows into compact clip level statistics for screening. Each window is encoded by its activity mix (the relative share of motion across streams), thus the predictor analyzes the distribution of motion across streams rather than its magnitude, making per channel effects transparent. We also introduce YT DemTalk, a new dataset curated from publicly available, in the wild camera facing videos. It contains 300 clips (150 with self reported dementia, 150 controls) to test our model and offer a first benchmarking of the corpus. On YT DemTalk, ablations identify gaze lability and mouth/jaw dynamics as the most informative cues, and light weighted shallow classifiers could attain a dementia prediction performance of (AUROC) 0.953, 0.961 Average Precision (AP), 0.851 F1-score, and 0.857 accuracy.




Agentic AI systems and Physical or Embodied AI systems have been two key research verticals at the forefront of Artificial Intelligence and Robotics, with Model Context Protocol (MCP) increasingly becoming a key component and enabler of agentic applications. However, the literature at the intersection of these verticals, i.e., Agentic Embodied AI, remains scarce. This paper introduces an MCP server for analyzing ROS and ROS 2 bags, allowing for analyzing, visualizing and processing robot data with natural language through LLMs and VLMs. We describe specific tooling built with robotics domain knowledge, with our initial release focused on mobile robotics and supporting natively the analysis of trajectories, laser scan data, transforms, or time series data. This is in addition to providing an interface to standard ROS 2 CLI tools ("ros2 bag list" or "ros2 bag info"), as well as the ability to filter bags with a subset of topics or trimmed in time. Coupled with the MCP server, we provide a lightweight UI that allows the benchmarking of the tooling with different LLMs, both proprietary (Anthropic, OpenAI) and open-source (through Groq). Our experimental results include the analysis of tool calling capabilities of eight different state-of-the-art LLM/VLM models, both proprietary and open-source, large and small. Our experiments indicate that there is a large divide in tool calling capabilities, with Kimi K2 and Claude Sonnet 4 demonstrating clearly superior performance. We also conclude that there are multiple factors affecting the success rates, from the tool description schema to the number of arguments, as well as the number of tools available to the models. The code is available with a permissive license at https://github.com/binabik-ai/mcp-rosbags.
This paper presents a bibliometric analysis of the field of short-term passenger flow forecasting within local public transit, covering 814 publications that span from 1984 to 2024. In addition to common bibliometric analysis tools, a variant of a citation network was developed, and topic modelling was conducted. The analysis reveals that research activity exhibited sporadic patterns prior to 2008, followed by a marked acceleration, characterised by a shift from conventional statistical and machine learning methodologies (e.g., ARIMA, SVM, and basic neural networks) to specialised deep learning architectures. Based on this insight, a connection to more general fields such as machine learning and time series modelling was established. In addition to modelling, spatial, linguistic, and modal biases were identified and findings from existing secondary literature were validated and quantified. This revealed existing gaps, such as constrained data fusion, open (multivariate) data, and underappreciated challenges related to model interpretability, cost-efficiency, and a balance between algorithmic performance and practical deployment considerations. In connection with the superordinate fields, the growth in relevance of foundation models is also noteworthy.
This study addresses the problem of dynamic anomaly detection in accounting transactions and proposes a real-time detection method based on a Transformer to tackle the challenges of hidden abnormal behaviors and high timeliness requirements in complex trading environments. The approach first models accounting transaction data by representing multi-dimensional records as time-series matrices and uses embedding layers and positional encoding to achieve low-dimensional mapping of inputs. A sequence modeling structure with multi-head self-attention is then constructed to capture global dependencies and aggregate features from multiple perspectives, thereby enhancing the ability to detect abnormal patterns. The network further integrates feed-forward layers and regularization strategies to achieve deep feature representation and accurate anomaly probability estimation. To validate the effectiveness of the method, extensive experiments were conducted on a public dataset, including comparative analysis, hyperparameter sensitivity tests, environmental sensitivity tests, and data sensitivity tests. Results show that the proposed method outperforms baseline models in AUC, F1-Score, Precision, and Recall, and maintains stable performance under different environmental conditions and data perturbations. These findings confirm the applicability and advantages of the Transformer-based framework for dynamic anomaly detection in accounting transactions and provide methodological support for intelligent financial risk control and auditing.




Pre-trained Time Series Foundational Models (TSFMs) represent a significant advance, capable of forecasting diverse time series with complex characteristics, including varied seasonalities, trends, and long-range dependencies. Despite their primary goal of universal time series forecasting, their efficacy is far from uniform; divergent training protocols and data sources cause individual TSFMs to exhibit highly variable performance across different forecasting tasks, domains, and horizons. Leveraging this complementary expertise by arbitrating existing TSFM outputs presents a compelling strategy, yet this remains a largely unexplored area of research. In this paper, we conduct a thorough examination of how different TSFMs exhibit specialized performance profiles across various forecasting settings, and how we can effectively leverage this behavior in arbitration between different time series models. We specifically analyze how factors such as model selection and forecast horizon distribution can influence the efficacy of arbitration strategies. Based on this analysis, we propose Synapse, a novel arbitration framework for TSFMs. Synapse is designed to dynamically leverage a pool of TSFMs, assign and adjust predictive weights based on their relative, context-dependent performance, and construct a robust forecast distribution by adaptively sampling from the output quantiles of constituent models. Experimental results demonstrate that Synapse consistently outperforms other popular ensembling techniques as well as individual TSFMs, demonstrating Synapse's efficacy in time series forecasting.
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
Foundation models for time series are emerging as powerful general-purpose backbones, yet their potential for domain-specific biomedical signals such as electroencephalography (EEG) remains rather unexplored. In this work, we investigate the applicability a recently proposed time series classification foundation model, to a different EEG tasks such as motor imagery classification and sleep stage prediction. We test two pretraining regimes: (a) pretraining on heterogeneous real-world time series from multiple domains, and (b) pretraining on purely synthetic data. We find that both variants yield strong performance, consistently outperforming EEGNet, a widely used convolutional baseline, and CBraMod, the most recent EEG-specific foundation model. These results suggest that generalist time series foundation models, even when pretrained on data of non-neural origin or on synthetic signals, can transfer effectively to EEG. Our findings highlight the promise of leveraging cross-domain pretrained models for brain signal analysis, suggesting that EEG may benefit from advances in the broader time series literature.
The rapid ascent of artificial intelligence (AI) is often portrayed as a revolution born from computer science and engineering. This narrative, however, obscures a fundamental truth: the theoretical and methodological core of AI is, and has always been, statistical. This paper systematically argues that the field of statistics provides the indispensable foundation for machine learning and modern AI. We deconstruct AI into nine foundational pillars-Inference, Density Estimation, Sequential Learning, Generalization, Representation Learning, Interpretability, Causality, Optimization, and Unification-demonstrating that each is built upon century-old statistical principles. From the inferential frameworks of hypothesis testing and estimation that underpin model evaluation, to the density estimation roots of clustering and generative AI; from the time-series analysis inspiring recurrent networks to the causal models that promise true understanding, we trace an unbroken statistical lineage. While celebrating the computational engines that power modern AI, we contend that statistics provides the brain-the theoretical frameworks, uncertainty quantification, and inferential goals-while computer science provides the brawn-the scalable algorithms and hardware. Recognizing this statistical backbone is not merely an academic exercise, but a necessary step for developing more robust, interpretable, and trustworthy intelligent systems. We issue a call to action for education, research, and practice to re-embrace this statistical foundation. Ignoring these roots risks building a fragile future; embracing them is the path to truly intelligent machines. There is no machine learning without statistical learning; no artificial intelligence without statistical thought.




Diagnosing the root causes of Quality of Experience (QoE) degradations in operational mobile networks is challenging due to complex cross-layer interactions among kernel performance indicators (KPIs) and the scarcity of reliable expert annotations. Although rule-based heuristics can generate labels at scale, they are noisy and coarse-grained, limiting the accuracy of purely data-driven approaches. To address this, we propose DK-Root, a joint data-and-knowledge-driven framework that unifies scalable weak supervision with precise expert guidance for robust root-cause analysis. DK-Root first pretrains an encoder via contrastive representation learning using abundant rule-based labels while explicitly denoising their noise through a supervised contrastive objective. To supply task-faithful data augmentation, we introduce a class-conditional diffusion model that generates KPIs sequences preserving root-cause semantics, and by controlling reverse diffusion steps, it produces weak and strong augmentations that improve intra-class compactness and inter-class separability. Finally, the encoder and the lightweight classifier are jointly fine-tuned with scarce expert-verified labels to sharpen decision boundaries. Extensive experiments on a real-world, operator-grade dataset demonstrate state-of-the-art accuracy, with DK-Root surpassing traditional ML and recent semi-supervised time-series methods. Ablations confirm the necessity of the conditional diffusion augmentation and the pretrain-finetune design, validating both representation quality and classification gains.