Topic:Time Series Analysis
What is Time Series Analysis? Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Papers and Code
Jun 16, 2025
Abstract:With the rapid advancement of aerospace technology and the large-scale deployment of low Earth orbit (LEO) satellite constellations, the challenges facing astronomical observations and deep space exploration have become increasingly pronounced. As a result, the demand for high-precision orbital data on space objects-along with comprehensive analyses of satellite positioning, constellation configurations, and deep space satellite dynamics-has grown more urgent. However, there remains a notable lack of publicly accessible, real-world datasets to support research in areas such as space object maneuver behavior prediction and collision risk assessment. This study seeks to address this gap by collecting and curating a representative dataset of maneuvering behavior from Starlink satellites. The dataset integrates Two-Line Element (TLE) catalog data with corresponding high-precision ephemeris data, thereby enabling a more realistic and multidimensional modeling of space object behavior. It provides valuable insights into practical deployment of maneuver detection methods and the evaluation of collision risks in increasingly congested orbital environments.
Via

Jun 12, 2025
Abstract:Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://www.kaggle.com/datasets/blacksnail789521/time-imm/data, and the benchmark library can be accessed at https://anonymous.4open.science/r/IMMTSF_NeurIPS2025.
* This paper is currently under review
Via

Jul 08, 2025
Abstract:This paper tackles the urgent need for efficient energy management in healthcare facilities, where fluctuating demands challenge operational efficiency and sustainability. Traditional methods often prove inadequate, causing inefficiencies and higher costs. To address this, the study presents an AI-based framework combining Long Short-Term Memory (LSTM), genetic algorithm (GA), and SHAP (Shapley Additive Explanations), specifically designed for healthcare energy management. Although LSTM is widely used for time-series forecasting, its application in healthcare energy prediction remains underexplored. The results reveal that LSTM significantly outperforms ARIMA and Prophet models in forecasting complex, non-linear demand patterns. LSTM achieves a Mean Absolute Error (MAE) of 21.69 and Root Mean Square Error (RMSE) of 29.96, far better than Prophet (MAE: 59.78, RMSE: 81.22) and ARIMA (MAE: 87.73, RMSE: 125.22), demonstrating superior performance. The genetic algorithm is applied to optimize model parameters and improve load balancing strategies, enabling adaptive responses to real-time energy fluctuations. SHAP analysis further enhances model transparency by explaining the influence of different features on predictions, fostering trust in decision-making processes. This integrated LSTM-GA-SHAP approach offers a robust solution for improving forecasting accuracy, boosting energy efficiency, and advancing sustainability in healthcare facilities. Future research may explore real-time deployment and hybridization with reinforcement learning for continuous optimization. Overall, the study establishes a solid foundation for using AI in healthcare energy management, highlighting its scalability, efficiency, and resilience potential.
Via

May 29, 2025
Abstract:Transformer-based models have gained increasing attention in time series research, driving interest in Large Language Models (LLMs) and foundation models for time series analysis. As the field moves toward multi-modality, Large Vision Models (LVMs) are emerging as a promising direction. In the past, the effectiveness of Transformer and LLMs in time series has been debated. When it comes to LVMs, a similar question arises: are LVMs truely useful for time series analysis? To address it, we design and conduct the first principled study involving 4 LVMs, 8 imaging methods, 18 datasets and 26 baselines across both high-level (classification) and low-level (forecasting) tasks, with extensive ablation analysis. Our findings indicate LVMs are indeed useful for time series classification but face challenges in forecasting. Although effective, the contemporary best LVM forecasters are limited to specific types of LVMs and imaging methods, exhibit a bias toward forecasting periods, and have limited ability to utilize long look-back windows. We hope our findings could serve as a cornerstone for future research on LVM- and multimodal-based solutions to different time series tasks.
Via

Jul 10, 2025
Abstract:Progress in a research field can be hard to assess, in particular when many concurrent methods are proposed in a short period of time. This is the case in digital pathology, where many foundation models have been released recently to serve as feature extractors for tile-level images, being used in a variety of downstream tasks, both for tile- and slide-level problems. Benchmarking available methods then becomes paramount to get a clearer view of the research landscape. In particular, in critical domains such as healthcare, a benchmark should not only focus on evaluating downstream performance, but also provide insights about the main differences between methods, and importantly, further consider uncertainty and robustness to ensure a reliable usage of proposed models. For these reasons, we introduce THUNDER, a tile-level benchmark for digital pathology foundation models, allowing for efficient comparison of many models on diverse datasets with a series of downstream tasks, studying their feature spaces and assessing the robustness and uncertainty of predictions informed by their embeddings. THUNDER is a fast, easy-to-use, dynamic benchmark that can already support a large variety of state-of-the-art foundation, as well as local user-defined models for direct tile-based comparison. In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets covering diverse tasks, feature analysis, and robustness. The code for THUNDER is publicly available at https://github.com/MICS-Lab/thunder.
Via

Jun 07, 2025
Abstract:Retentive Network (RetNet) represents a significant advancement in neural network architecture, offering an efficient alternative to the Transformer. While Transformers rely on self-attention to model dependencies, they suffer from high memory costs and limited scalability when handling long sequences due to their quadratic complexity. To mitigate these limitations, RetNet introduces a retention mechanism that unifies the inductive bias of recurrence with the global dependency modeling of attention. This mechanism enables linear-time inference, facilitates efficient modeling of extended contexts, and remains compatible with fully parallelizable training pipelines. RetNet has garnered significant research interest due to its consistently demonstrated cross-domain effectiveness, achieving robust performance across machine learning paradigms including natural language processing, speech recognition, and time-series analysis. However, a comprehensive review of RetNet is still missing from the current literature. This paper aims to fill that gap by offering the first detailed survey of the RetNet architecture, its key innovations, and its diverse applications. We also explore the main challenges associated with RetNet and propose future research directions to support its continued advancement in both academic research and practical deployment.
* 15 pages, 3 figures
Via

May 24, 2025
Abstract:Stock price prediction remains a complex and high-stakes task in financial analysis, traditionally addressed using statistical models or, more recently, language models. In this work, we introduce VISTA (Vision-Language Inference for Stock Time-series Analysis), a novel, training-free framework that leverages Vision-Language Models (VLMs) for multi-modal stock forecasting. VISTA prompts a VLM with both textual representations of historical stock prices and their corresponding line charts to predict future price values. By combining numerical and visual modalities in a zero-shot setting and using carefully designed chain-of-thought prompts, VISTA captures complementary patterns that unimodal approaches often miss. We benchmark VISTA against standard baselines, including ARIMA and text-only LLM-based prompting methods. Experimental results show that VISTA outperforms these baselines by up to 89.83%, demonstrating the effectiveness of multi-modal inference for stock time-series analysis and highlighting the potential of VLMs in financial forecasting tasks without requiring task-specific training.
Via

Jul 09, 2025
Abstract:Reinforcement Learning (RL) has demonstrated its potential to improve the reasoning ability of Large Language Models (LLMs). One major limitation of most existing Reinforcement Finetuning (RFT) methods is that they are on-policy RL in nature, i.e., data generated during the past learning process is not fully utilized. This inevitably comes at a significant cost of compute and time, posing a stringent bottleneck on continuing economic and efficient scaling. To this end, we launch the renaissance of off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. ReMix consists of three major components: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio for efficient training; (2) KL-Convex policy constraint to balance the trade-off between stability and flexibility; (3) Policy reincarnation to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement. In our experiments, we train a series of ReMix models upon PPO, GRPO and 1.5B, 7B base models. ReMix shows an average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75 training steps, on five math reasoning benchmarks (i.e., AIME'24, AMC'23, Minerva, OlympiadBench, and MATH500). Compared with 15 recent advanced models, ReMix shows SOTA-level performance with an over 30x to 450x reduction in training cost in terms of rollout data volume. In addition, we reveal insightful findings via multifaceted analysis, including the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the collapse mode of self-reflection behavior under the presence of severe off-policyness, etc.
* Preliminary version. Project page:
https://anitaleungxx.github.io/ReMix
Via

Jul 03, 2025
Abstract:Are Large Language Models (LLMs) a new form of strategic intelligence, able to reason about goals in competitive settings? We present compelling supporting evidence. The Iterated Prisoner's Dilemma (IPD) has long served as a model for studying decision-making. We conduct the first ever series of evolutionary IPD tournaments, pitting canonical strategies (e.g., Tit-for-Tat, Grim Trigger) against agents from the leading frontier AI companies OpenAI, Google, and Anthropic. By varying the termination probability in each tournament (the "shadow of the future"), we introduce complexity and chance, confounding memorisation. Our results show that LLMs are highly competitive, consistently surviving and sometimes even proliferating in these complex ecosystems. Furthermore, they exhibit distinctive and persistent "strategic fingerprints": Google's Gemini models proved strategically ruthless, exploiting cooperative opponents and retaliating against defectors, while OpenAI's models remained highly cooperative, a trait that proved catastrophic in hostile environments. Anthropic's Claude emerged as the most forgiving reciprocator, showing remarkable willingness to restore cooperation even after being exploited or successfully defecting. Analysis of nearly 32,000 prose rationales provided by the models reveals that they actively reason about both the time horizon and their opponent's likely strategy, and we demonstrate that this reasoning is instrumental to their decisions. This work connects classic game theory with machine psychology, offering a rich and granular view of algorithmic decision-making under uncertainty.
* 29 pages, 27 tables, 4 figures
Via

May 29, 2025
Abstract:In recent years, the rapid advancement and democratization of generative AI models have sparked significant debate over safety, ethical risks, and dual-use concerns, particularly in the context of cybersecurity. While anecdotally known, this paper provides empirical evidence regarding generative AI's association with malicious internet-related activities and cybercrime by examining the phenomenon through psychological frameworks of technological amplification and affordance theory. Using a quasi-experimental design with interrupted time series analysis, we analyze two datasets, one general and one cryptocurrency-focused, to empirically assess generative AI's role in cybercrime. The findings contribute to ongoing discussions about AI governance by balancing control and fostering innovation, underscoring the need for strategies to guide policymakers, inform AI developers and cybersecurity professionals, and educate the public to maximize AI's benefits while mitigating its risks.
Via
