University of Trieste, Italy
Abstract:We introduce a novel deep learning approach that harnesses the power of generative artificial intelligence to enhance the accuracy of contextual forecasting in sewerage systems. By developing a diffusion-based model that processes multivariate time series data, our system excels at capturing complex correlations across diverse environmental signals, enabling robust predictions even during extreme weather events. To strengthen the model's reliability, we further calibrate its predictions with a conformal inference technique, tailored for probabilistic time series data, ensuring that the resulting prediction intervals are statistically reliable and cover the true target values with a desired confidence level. Our empirical tests on real sewerage system data confirm the model's exceptional capability to deliver reliable contextual predictions, maintaining accuracy even under severe weather conditions.
Abstract:Data synthesis is gaining momentum as a privacy-enhancing technology. While single-table tabular data generation has seen considerable progress, current methods for multi-table data often lack the flexibility and expressiveness needed to capture complex relational structures. In particular, they struggle with long-range dependencies and complex foreign-key relationships, such as tables with multiple parent tables or multiple types of links between the same pair of tables. We propose a generative model for relational data that generates the content of a relational dataset given the graph formed by the foreign-key relationships. We do this by learning a deep generative model of the content of the whole relational database by flow matching, where the neural network trained to denoise records leverages a graph neural network to obtain information from connected records. Our method is flexible, as it can support relational datasets with complex structures, and expressive, as the generation of each record can be influenced by any other record within the same connected component. We evaluate our method on several benchmark datasets and show that it achieves state-of-the-art performance in terms of synthetic data fidelity.
Abstract:The layout of analog ICs requires making complex trade-offs, while addressing device physics and variability of the circuits. This makes full automation with learning-based solutions hard to achieve. However, reinforcement learning (RL) has recently reached significant results, particularly in solving the floorplanning problem. This paper presents a hybrid method that combines RL with a beam (BS) strategy. The BS algorithm enhances the agent's inference process, allowing for the generation of flexible floorplans by accomodating various objective weightings, and addressing congestion without without the need for policy retraining or fine-tuning. Moreover, the RL agent's generalization ability stays intact, along with its efficient handling of circuit features and constraints. Experimental results show approx. 5-85% improvement in area, dead space and half-perimeter wire length compared to a standard RL application, along with higher rewards for the agent. Moreover, performance and efficiency align closely with those of existing state-of-the-art techniques.
Abstract:Synthetic data has garnered attention as a Privacy Enhancing Technology (PET) in sectors such as healthcare and finance. When using synthetic data in practical applications, it is important to provide protection guarantees. In the literature, two family of approaches are proposed for tabular data: on the one hand, Similarity-based methods aim at finding the level of similarity between training and synthetic data. Indeed, a privacy breach can occur if the generated data is consistently too similar or even identical to the train data. On the other hand, Attack-based methods conduce deliberate attacks on synthetic datasets. The success rates of these attacks reveal how secure the synthetic datasets are. In this paper, we introduce a contrastive method that improves privacy assessment of synthetic datasets by embedding the data in a more representative space. This overcomes obstacles surrounding the multitude of data types and attributes. It also makes the use of intuitive distance metrics possible for similarity measurements and as an attack vector. In a series of experiments with publicly available datasets, we compare the performances of similarity-based and attack-based methods, both with and without use of the contrastive learning-based embeddings. Our results show that relatively efficient, easy to implement privacy metrics can perform equally well as more advanced metrics explicitly modeling conditions for privacy referred to by the GDPR.
Abstract:We introduce Limited Rollout Beam Search (LRBS), a beam search strategy for deep reinforcement learning (DRL) based combinatorial optimization improvement heuristics. Utilizing pre-trained models on the Euclidean Traveling Salesperson Problem, LRBS significantly enhances both in-distribution performance and generalization to larger problem instances, achieving optimality gaps that outperform existing improvement heuristics and narrowing the gap with state-of-the-art constructive methods. We also extend our analysis to two pickup and delivery TSP variants to validate our results. Finally, we employ our search strategy for offline and online adaptation of the pre-trained improvement policy, leading to improved search performance and surpassing recent adaptive methods for constructive heuristics.
Abstract:Analog integrated circuit (IC) floorplanning is typically a manual process with the placement of components (devices and modules) planned by a layout engineer. This process is further complicated by the interdependence of floorplanning and routing steps, numerous electric and layout-dependent constraints, as well as the high level of customization expected in analog design. This paper presents a novel automatic floorplanning algorithm based on reinforcement learning. It is augmented by a relational graph convolutional neural network model for encoding circuit features and positional constraints. The combination of these two machine learning methods enables knowledge transfer across different circuit designs with distinct topologies and constraints, increasing the \emph{generalization ability} of the solution. Applied to $6$ industrial circuits, our approach surpassed established floorplanning techniques in terms of speed, area and half-perimeter wire length. When integrated into a \emph{procedural generator} for layout completion, overall layout time was reduced by $67.3\%$ with a $8.3\%$ mean area reduction compared to manual layout.
Abstract:When examined through the lens of their residual streams, a puzzling property emerges in transformer networks: residual contributions (e.g., attention heads) sometimes specialize in specific tasks or input attributes. In this paper, we analyze this phenomenon in vision transformers, focusing on the spectral geometry of residuals, and explore its implications for modality alignment in vision-language models. First, we link it to the intrinsically low-dimensional structure of visual head representations, zooming into their principal components and showing that they encode specialized roles across a wide variety of input data distributions. Then, we analyze the effect of head specialization in multimodal models, focusing on how improved alignment between text and specialized heads impacts zero-shot classification performance. This specialization-performance link consistently holds across diverse pre-training data, network sizes, and objectives, demonstrating a powerful new mechanism for boosting zero-shot classification through targeted alignment. Ultimately, we translate these insights into actionable terms by introducing ResiDual, a technique for spectral alignment of the residual stream. Much like panning for gold, it lets the noise from irrelevant unit principal components (i.e., attributes) wash away to amplify task-relevant ones. Remarkably, this dual perspective on modality alignment yields fine-tuning level performances on different data distributions while modeling an extremely interpretable and parameter-efficient transformation, as we extensively show on more than 50 (pre-trained network, dataset) pairs.
Abstract:Timeseria is an object-oriented time series processing library implemented in Python, which aims at making it easier to manipulate time series data and to build statistical and machine learning models on top of it. Unlike common data analysis frameworks, it builds up from well defined and reusable logical units (objects), which can be easily combined together in order to ensure a high level of consistency. Thanks to this approach, Timeseria can address by design several non-trivial issues often underestimated, such as handling data losses, non-uniform sampling rates, differences between aggregated data and punctual observations, time zones, daylight saving times, and more. Timeseria comes with a comprehensive set of base data structures, common data manipulation operations, and extensible models for data reconstruction, forecasting and anomaly detection. It also integrates a powerful plotting engine capable of handling even millions of data points.
Abstract:To gain insight into the mechanisms behind machine learning methods, it is crucial to establish connections among the features describing data points. However, these correlations often exhibit a high-dimensional and strongly nonlinear nature, which makes them challenging to detect using standard methods. This paper exploits the entanglement between intrinsic dimensionality and correlation to propose a metric that quantifies the (potentially nonlinear) correlation between high-dimensional manifolds. We first validate our method on synthetic data in controlled environments, showcasing its advantages and drawbacks compared to existing techniques. Subsequently, we extend our analysis to large-scale applications in neural network representations. Specifically, we focus on latent representations of multimodal data, uncovering clear correlations between paired visual and textual embeddings, whereas existing methods struggle significantly in detecting similarity. Our results indicate the presence of highly nonlinear correlation patterns between latent manifolds.
Abstract:The increase of legislative concerns towards the usage of Artificial Intelligence (AI) has recently led to a series of regulations striving for a more transparent, trustworthy and accountable AI. Along with these proposals, the field of Explainable AI (XAI) has seen a rapid growth but the usage of its techniques has at times led to unexpected results. The robustness of the approaches is, in fact, a key property often overlooked: it is necessary to evaluate the stability of an explanation (to random and adversarial perturbations) to ensure that the results are trustable. To this end, we propose a test to evaluate the robustness to non-adversarial perturbations and an ensemble approach to analyse more in depth the robustness of XAI methods applied to neural networks and tabular datasets. We will show how leveraging manifold hypothesis and ensemble approaches can be beneficial to an in-depth analysis of the robustness.