Abstract:Multi-scale decomposition architectures have emerged as predominant methodologies in time series forecasting. However, real-world time series exhibit noise interference across different scales, while heterogeneous information distribution among frequency components at varying scales leads to suboptimal multi-scale representation. Inspired by Kolmogorov-Arnold Networks (KAN) and Parseval's theorem, we propose a KAN based adaptive Frequency Selection learning architecture (KFS) to address these challenges. This framework tackles prediction challenges stemming from cross-scale noise interference and complex pattern modeling through its FreK module, which performs energy-distribution-based dominant frequency selection in the spectral domain. Simultaneously, KAN enables sophisticated pattern representation while timestamp embedding alignment synchronizes temporal representations across scales. The feature mixing module then fuses scale-specific patterns with aligned temporal features. Extensive experiments across multiple real-world time series datasets demonstrate that KT achieves state-of-the-art performance as a simple yet effective architecture.
Abstract:Domain shift poses a fundamental challenge in time series analysis, where models trained on source domain often fail dramatically when applied in target domain with different yet similar distributions. While current unsupervised domain adaptation (UDA) methods attempt to align cross-domain feature distributions, they typically treat features as indivisible entities, ignoring their intrinsic compositions that governs domain adaptation. We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition. Our core insight is that effective domain adaptation requires not just alignment, but principled disentanglement of transferable knowledge from mixed representations. DARSD consists three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A prototypical pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps. Comprehensive experiments conducted on four benchmark datasets (WISDM, HAR, HHAR, and MFD) demonstrate DARSD's superiority against 12 UDA algorithms, achieving optimal performance in 35 out of 53 cross-domain scenarios.
Abstract:Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks. The most prominent advantage of SSL is that it reduces the dependence on labeled data. Based on the pre-training and fine-tuning strategy, even a small amount of labeled data can achieve high performance. Compared with many published self-supervised surveys on computer vision and natural language processing, a comprehensive survey for time series SSL is still missing. To fill this gap, we review current state-of-the-art SSL methods for time series data in this article. To this end, we first comprehensively review existing surveys related to SSL and time series, and then provide a new taxonomy of existing time series SSL methods. We summarize these methods into three categories: generative-based, contrastive-based, and adversarial-based. All methods can be further divided into ten subcategories. To facilitate the experiments and validation of time series SSL methods, we also summarize datasets commonly used in time series forecasting, classification, anomaly detection, and clustering tasks. Finally, we present the future directions of SSL for time series analysis.