Abstract:The rise of large language models has led to significant performance breakthroughs in named entity recognition (NER) for high-resource languages, yet there remains substantial room for improvement in low- and medium-resource languages. Existing multilingual NER methods face severe language interference during the multi-language adaptation process, manifested in feature conflicts between different languages and the competitive suppression of low-resource language features by high-resource languages. Although training a dedicated model for each language can mitigate such interference, it lacks scalability and incurs excessive computational costs in real-world applications. To address this issue, we propose RetrieveAll, a universal multilingual NER framework based on dynamic LoRA. The framework decouples task-specific features across languages and demonstrates efficient dynamic adaptability. Furthermore, we introduce a cross-granularity knowledge augmented method that fully exploits the intrinsic potential of the data without relying on external resources. By leveraging a hierarchical prompting mechanism to guide knowledge injection, this approach advances the paradigm from "prompt-guided inference" to "prompt-driven learning." Experimental results show that RetrieveAll outperforms existing baselines; on the PAN-X dataset, it achieves an average F1 improvement of 12.1 percent.
Abstract:Tibetan is a low-resource language with minimal parallel speech corpora spanning its three major dialects-\"U-Tsang, Amdo, and Kham-limiting progress in speech modeling. To address this issue, we propose FMSD-TTS, a few-shot, multi-speaker, multi-dialect text-to-speech framework that synthesizes parallel dialectal speech from limited reference audio and explicit dialect labels. Our method features a novel speaker-dialect fusion module and a Dialect-Specialized Dynamic Routing Network (DSDR-Net) to capture fine-grained acoustic and linguistic variations across dialects while preserving speaker identity. Extensive objective and subjective evaluations demonstrate that FMSD-TTS significantly outperforms baselines in both dialectal expressiveness and speaker similarity. We further validate the quality and utility of the synthesized speech through a challenging speech-to-speech dialect conversion task. Our contributions include: (1) a novel few-shot TTS system tailored for Tibetan multi-dialect speech synthesis, (2) the public release of a large-scale synthetic Tibetan speech corpus generated by FMSD-TTS, and (3) an open-source evaluation toolkit for standardized assessment of speaker similarity, dialect consistency, and audio quality.
Abstract:Multi-level Tibetan spelling correction addresses errors at both the character and syllable levels within a unified model. Existing methods focus mainly on single-level correction and lack effective integration of both levels. Moreover, there are no open-source datasets or augmentation methods tailored for this task in Tibetan. To tackle this, we propose a data augmentation approach using unlabeled text to generate multi-level corruptions, and introduce TiSpell, a semi-masked model capable of correcting both character- and syllable-level errors. Although syllable-level correction is more challenging due to its reliance on global context, our semi-masked strategy simplifies this process. We synthesize nine types of corruptions on clean sentences to create a robust training set. Experiments on both simulated and real-world data demonstrate that TiSpell, trained on our dataset, outperforms baseline models and matches the performance of state-of-the-art approaches, confirming its effectiveness.
Abstract:Large language models (LLMs) have made tremendous progress in recent years, but low-resource languages, such as Tibetan, remain significantly underrepresented in their evaluation. Despite Tibetan being spoken by over seven million people, it has largely been neglected in the development and assessment of LLMs. To address this gap, we present TLUE (A Tibetan Language Understanding Evaluation Benchmark), the first large-scale benchmark for assessing LLMs' capabilities in Tibetan. TLUE comprises two major components: (1) a comprehensive multi-task understanding benchmark spanning 5 domains and 67 subdomains, and (2) a safety benchmark covering 7 subdomains. We evaluate a diverse set of state-of-the-art LLMs. Experimental results demonstrate that most LLMs perform below the random baseline, highlighting the considerable challenges LLMs face in processing Tibetan, a low-resource language. TLUE provides an essential foundation for driving future research and progress in Tibetan language understanding and underscores the need for greater inclusivity in LLM development.
Abstract:This article explores how to drive intelligent iot monitoring and control through cloud computing and machine learning. As iot and the cloud continue to generate large and diverse amounts of data as sensor devices in the network, the collected data is sent to the cloud for statistical analysis, prediction, and data analysis to achieve business objectives. However, because the cloud computing model is limited by distance, it can be problematic in environments where the quality of the Internet connection is not ideal for critical operations. Therefore, edge computing, as a distributed computing architecture, moves the location of processing applications, data and services from the central node of the network to the logical edge node of the network to reduce the dependence on cloud processing and analysis of data, and achieve near-end data processing and analysis. The combination of iot and edge computing can reduce latency, improve efficiency, and enhance security, thereby driving the development of intelligent systems. The paper also introduces the development of iot monitoring and control technology, the application of edge computing in iot monitoring and control, and the role of machine learning in data analysis and fault detection. Finally, the application and effect of intelligent Internet of Things monitoring and control system in industry, agriculture, medical and other fields are demonstrated through practical cases and experimental studies.
Abstract:To enable large-scale and efficient deployment of artificial intelligence (AI), the combination of AI and edge computing has spawned Edge Intelligence, which leverages the computing and communication capabilities of end devices and edge servers to process data closer to where it is generated. A key technology for edge intelligence is the privacy-protecting machine learning paradigm known as Federated Learning (FL), which enables data owners to train models without having to transfer raw data to third-party servers. However, FL networks are expected to involve thousands of heterogeneous distributed devices. As a result, communication efficiency remains a key bottleneck. To reduce node failures and device exits, a Hierarchical Federated Learning (HFL) framework is proposed, where a designated cluster leader supports the data owner through intermediate model aggregation. Therefore, based on the improvement of edge server resource utilization, this paper can effectively make up for the limitation of cache capacity. In order to mitigate the impact of soft clicks on the quality of user experience (QoE), the authors model the user QoE as a comprehensive system cost. To solve the formulaic problem, the authors propose a decentralized caching algorithm with federated deep reinforcement learning (DRL) and federated learning (FL), where multiple agents learn and make decisions independently