Abstract:Visually impaired users face significant challenges in daily information access and real-time environmental perception, and there is an urgent need for intelligent assistive systems with accurate recognition capabilities. Although large-scale models provide effective solutions for perception and reasoning, their practical deployment on assistive devices is severely constrained by excessive memory consumption and high inference costs. Moreover, existing quantization strategies often ignore inter-block error accumulation, leading to degraded model stability. To address these challenges, this study proposes a novel quantization framework -- Residual-Projected Multi-Collaboration Closed-Loop and Single Instance Quantization(RPIQ), whose quantization process adopts a multi-collaborative closed-loop compensation scheme based on Single Instance Calibration and Gauss-Seidel Iterative Quantization. Experiments on various types of large-scale models, including language models such as OPT, Qwen, and LLaMA, as well as vision-language models such as CogVLM2, demonstrate that RPIQ can compress models to 4-bit representation while significantly reducing peak memory consumption (approximately 60%-75% reduction compared to original full-precision models). The method maintains performance highly close to full-precision models across multiple language and visual tasks, and exhibits excellent recognition and reasoning capabilities in key applications such as text understanding and visual question answering in complex scenarios. While verifying the effectiveness of RPIQ for deployment in real assistive systems, this study also advances the computational efficiency and reliability of large models, enabling them to provide visually impaired users with the required information accurately and rapidly.
Abstract:This study proposes the dual technological innovation framework, including a cross-modal differ entiated quantization framework for vision-language models (VLMs) and a scene-aware vectorized memory multi-agent system for visually impaired assistance. The modular framework was developed implementing differentiated processing strategies, effectively reducing memory requirements from 38GB to 16GB while maintaining model performance. The multi-agent architecture combines scene classification, vectorized memory, and multimodal interaction, enabling persistent storage and efficient retrieval of scene memories. Through perception-memory-reasoning workflows, the system provides environmental information beyond the current view using historical memories. Experiments show the quantized 19B-parameter model only experiences a 2.05% performance drop on MMBench and maintains 63.7 accuracy on OCR-VQA (original: 64.9), outperforming smaller models with equivalent memory requirements like the Molmo-7B series. The system maintains response latency between 2.83-3.52 seconds from scene analysis to initial speech output, substantially faster than non-streaming methods. This research advances computational efficiency and assistive technology, offering visually impaired users comprehensive real-time assistance in scene perception, text recognition, and navigation.