Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Imbalanced classification, where one class is observed far less frequently than the other, often causes standard training procedures to prioritize the majority class and perform poorly on rare but important cases. A classic and widely used remedy is to augment the minority class with synthetic examples, but two basic questions remain under-resolved: when does synthetic augmentation actually help, and how many synthetic samples should be generated? We develop a unified statistical framework for synthetic augmentation in imbalanced learning, studying models trained on imbalanced data augmented with synthetic minority samples and evaluated under the balanced population risk. Our theory shows that synthetic data is not always beneficial. In a ``local symmetry" regime, imbalance is not the dominant source of error near the balanced optimum, so adding synthetic samples cannot improve learning rates and can even degrade performance by amplifying generator mismatch. When augmentation can help (a ``local asymmetry" regime), the optimal synthetic size depends on generator accuracy and on whether the generator's residual mismatch is directionally aligned with the intrinsic majority-minority shift. This structure can make the best synthetic size deviate from naive full balancing, sometimes by a small refinement and sometimes substantially when generator bias is systematic. Practically, we recommend Validation-Tuned Synthetic Size (VTSS): select the synthetic size by minimizing balanced validation loss over a range centered near the fully balanced baseline, while allowing meaningful departures when the data indicate them. Simulations and a real sepsis prediction study support the theory and illustrate when synthetic augmentation helps, when it cannot, and how to tune its quantity effectively.
Model merging (MM) offers an efficient mechanism for integrating multiple specialized models without access to original training data or costly retraining. While MM has demonstrated success in domains like computer vision, its role in recommender systems (RSs) remains largely unexplored. Recently, Generative Recommendation (GR) has emerged as a new paradigm in RSs, characterized by rapidly growing model scales and substantial computational costs, making MM particularly appealing for cost-sensitive deployment scenarios. In this work, we present the first systematic study of MM in GR through a contextual lens. We focus on a fundamental yet underexplored challenge in real-world: how to merge generative recommenders specialized to different real-world contexts, arising from temporal evolving user behaviors and heterogeneous application domains. To this end, we propose a unified framework MMGRid, a structured contextual grid of GR checkpoints that organizes models trained under diverse contexts induced by temporal evolution and domain diversity. All checkpoints are derived from a shared base LLM but fine-tuned on context-specific data, forming a realistic and controlled model space for systematically analyzing MM across GR paradigms and merging algorithms. Our investigation reveals several key insights. First, training GR models from LLMs can introduce parameter conflicts during merging due to token distribution shifts and objective disparities; such conflicts can be alleviated by disentangling task-aware and context-specific parameter changes via base model replacement. Second, incremental training across contexts induces recency bias, which can be effectively balanced through weighted contextual merging. Notably, we observe that optimal merging weights correlate with context-dependent interaction characteristics, offering practical guidance for weight selection in real-world deployments.
Contemporary sequential recommendation methods are becoming more complex, shifting from classification to a diffusion-guided generative paradigm. However, the quality of guidance in the form of user information is often compromised by missing data in the observed sequences, leading to suboptimal generation quality. Existing methods address this by removing locally similar items, but overlook ``critical turning points'' in user interest, which are crucial for accurately predicting subsequent user intent. To address this, we propose a novel Counterfactual Attention Regulation Diffusion model (CARD), which focuses on amplifying the signal from key interest-turning-point items while concurrently identifying and suppressing noise within the user sequence. CARD consists of (1) a Dual-side Thompson Sampling method to identify sequences undergoing significant interest shift, and (2) a counterfactual attention mechanism for these sequences to quantify the importance of each item. In this manner, CARD provides the diffusion model with a high-quality guidance signal composed of dynamically re-weighted interaction vectors to enable effective generation. Experiments show our method works well on real-world data without being computationally expensive. Our code is available at https://github.com/yanqilong3321/CARD.
Personalized learning systems have emerged as a promising approach to enhance student outcomes by tailoring educational content, pacing, and feedback to individual needs. However, most existing systems remain fragmented, specializing in either knowledge tracing, diagnostic modeling, or resource recommendation, but rarely integrating these components into a cohesive adaptive cycle. In this paper, we propose ALIGNAgent (Adaptive Learner Intelligence for Gap Identification and Next-step guidance), a multi-agent educational framework designed to deliver personalized learning through integrated knowledge estimation, skill-gap identification, and targeted resource recommendation.ALIGNAgent begins by processing student quiz performance, gradebook data, and learner preferences to generate topic-level proficiency estimates using a Skill Gap Agent that employs concept-level diagnostic reasoning to identify specific misconceptions and knowledge deficiencies. After identifying skill gaps, the Recommender Agent retrieves preference-aware learning materials aligned with diagnosed deficiencies, implementing a continuous feedback loop where interventions occur before advancing to subsequent topics. Extensive empirical evaluation on authentic datasets from two undergraduate computer science courses demonstrates ALIGNAgent's effectiveness, with GPT-4o-based agents achieving precision of 0.87-0.90 and F1 scores of 0.84-0.87 in knowledge proficiency estimation validated against actual exam performance.
Prompting is central to interaction with AI systems, yet many users struggle to explore alternative directions, articulate creative intent, or understand how variations in prompts shape model outputs. We introduce prompt recommender systems (PRS) as an interaction approach that supports exploration, suggesting contextually relevant follow-up prompts. We present PromptHelper, a PRS prototype integrated into an AI chatbot that surfaces semantically diverse prompt suggestions while users work on real writing tasks. We evaluate PromptHelper in a 2x2 fully within-subjects study (N=32) across creative and academic writing tasks. Results show that PromptHelper significantly increases users' perceived exploration and expressiveness without increasing cognitive workload. Qualitative findings illustrate how prompt recommendations help users branch into new directions, overcome uncertainty about what to ask next, and better articulate their intent. We discuss implications for designing AI interfaces that scaffold exploratory interaction while preserving user agency, and release open-source resources to support research on prompt recommendation.
Graph-based social recommendation (SocialRec) has emerged as a powerful extension of graph collaborative filtering (GCF), which leverages graph neural networks (GNNs) to capture multi-hop collaborative signals from user-item interactions. These methods enrich user representations by incorporating social network information into GCF, thereby integrating additional collaborative signals from social relations. However, existing GCF and graph-based SocialRec approaches face significant challenges: they incur high computational costs and suffer from limited scalability due to the large number of parameters required to assign explicit embeddings to all users and items. In this work, we propose PULSE (Parameter-efficient User representation Learning with Social Knowledge), a framework that addresses this limitation by constructing user representations from socially meaningful signals without creating an explicit learnable embedding for each user. PULSE reduces the parameter size by up to 50% compared to the most lightweight GCF baseline. Beyond parameter efficiency, our method achieves state-of-the-art performance, outperforming 13 GCF and graph-based social recommendation baselines across varying levels of interaction sparsity, from cold-start to highly active users, through a time- and memory-efficient modeling process.
Machine learning and artificial intelligence conferences such as NeurIPS and ICML now regularly receive tens of thousands of submissions, posing significant challenges to maintaining the quality and consistency of the peer review process. This challenge is particularly acute for best paper awards, which are an important part of the peer review process, yet whose selection has increasingly become a subject of debate in recent years. In this paper, we introduce an author-assisted mechanism to facilitate the selection of best paper awards. Our method employs the Isotonic Mechanism for eliciting authors' assessments of their own submissions in the form of a ranking, which is subsequently utilized to adjust the raw review scores for optimal estimation of the submissions' ground-truth quality. We demonstrate that authors are incentivized to report truthfully when their utility is a convex additive function of the adjusted scores, and we validate this convexity assumption for best paper awards using publicly accessible review data of ICLR from 2019 to 2023 and NeurIPS from 2021 to 2023. Crucially, in the special case where an author has a single quota -- that is, may nominate only one paper -- we prove that truthfulness holds even when the utility function is merely nondecreasing and additive. This finding represents a substantial relaxation of the assumptions required in prior work. For practical implementation, we extend our mechanism to accommodate the common scenario of overlapping authorship. Finally, simulation results demonstrate that our mechanism significantly improves the quality of papers selected for awards.
Semantic ID learning is a key interface in Generative Recommendation (GR) models, mapping items to discrete identifiers grounded in side information, most commonly via a pretrained text encoder. However, these text encoders are primarily optimized for well-formed natural language. In real-world recommendation data, item descriptions are often symbolic and attribute-centric, containing numerals, units, and abbreviations. These text encoders can break these signals into fragmented tokens, weakening semantic coherence and distorting relationships among attributes. Worse still, when moving to multimodal GR, relying on standard text encoders introduces an additional obstacle: text and image embeddings often exhibit mismatched geometric structures, making cross-modal fusion less effective and less stable. In this paper, we revisit representation design for Semantic ID learning by treating text as a visual signal. We conduct a systematic empirical study of OCR-based text representations, obtained by rendering item descriptions into images and encoding them with vision-based OCR models. Experiments across four datasets and two generative backbones show that OCR-text consistently matches or surpasses standard text embeddings for Semantic ID learning in both unimodal and multimodal settings. Furthermore, we find that OCR-based Semantic IDs remain robust under extreme spatial-resolution compression, indicating strong robustness and efficiency in practical deployments.
Peer review is at the heart of modern science. As submission numbers rise and research communities grow, the decline in review quality is a popular narrative and a common concern. Yet, is it true? Review quality is difficult to measure, and the ongoing evolution of reviewing practices makes it hard to compare reviews across venues and time. To address this, we introduce a new framework for evidence-based comparative study of review quality and apply it to major AI and machine learning conferences: ICLR, NeurIPS and *ACL. We document the diversity of review formats and introduce a new approach to review standardization. We propose a multi-dimensional schema for quantifying review quality as utility to editors and authors, coupled with both LLM-based and lightweight measurements. We study the relationships between measurements of review quality, and its evolution over time. Contradicting the popular narrative, our cross-temporal analysis reveals no consistent decline in median review quality across venues and years. We propose alternative explanations, and outline recommendations to facilitate future empirical studies of review quality.
We introduce Lattice, a hybrid sequential prediction system that conditionally activates learned behavioral structure using binary confidence gating. The system clusters behavior windows into behavioral archetypes and uses binary confidence gating to activate archetype-based scoring only when confidence exceeds a threshold, falling back to baseline predictions when uncertain. We validate Lattice on recommendation systems (MovieLens), scientific time-series (LIGO), and financial markets, using LSTM and transformer backbones. On MovieLens with LSTM, Lattice achieves +31.9% improvement over LSTM baseline in HR@10 (p < 3.29 x 10^-25, 30 seeds), outperforming transformer baselines by 109.4% over SASRec and 218.6% over BERT4Rec. On LIGO and financial data, the system correctly refuses archetype activation when distribution shift occurs - a successful outcome demonstrating confidence gating prevents false activation. On transformer backbones, Lattice provides 0.0% improvement (neutral, no degradation), gracefully deferring when structure is already present. This bidirectional validation - activating when patterns apply, refusing when they don't, and deferring when redundant - supports confidence gating as a promising architectural principle for managing epistemic uncertainty in safety-critical applications.