Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Self-supervised learning (SSL) has transformed speech processing, yet its reliance on massive pre-training datasets remains a bottleneck. While robustness is often attributed to scale and diversity, the role of the data distribution is less understood. We systematically examine how curated subsets of pre-training data influence Automatic Speech Recognition (ASR) performance. Surprisingly, optimizing for acoustic, speaker, or linguistic diversity yields no clear improvements over random sampling. Instead, we find that prioritizing the longest utterances achieves superior ASR results while using only half the original dataset, reducing pre-training time by 24% on a large corpora. These findings suggest that for pre-training speech SSL models, data length is a more critical factor than either data diversity or overall data quantity for performance and efficiency, offering a new perspective for data selection strategies in SSL speech processing.
Self-supervised learning (SSL) models have achieved impressive results across many speech tasks, yet child automatic speech recognition (ASR) remains challenging due to limited data and pretraining domain mismatch. Fine-tuning SSL models on child speech induces shifts in the representation space. We hypothesize that delta SSL embeddings, defined as the differences between embeddings from a finetuned model and those from its pretrained counterpart, encode task-specific information that complements finetuned features from another SSL model. We evaluate multiple fusion strategies on the MyST childrens corpus using different models. Results show that delta embedding fusion with WavLM yields up to a 10 percent relative WER reduction for HuBERT and a 4.4 percent reduction for W2V2, compared to finetuned embedding fusion. Notably, fusing WavLM with delta W2V2 embeddings achieves a WER of 9.64, setting a new state of the art among SSL models on the MyST corpus. These findings demonstrate the effectiveness of delta embeddings and highlight feature fusion as a promising direction for advancing child ASR.
Transformer-based architectures are the most used architectures in many deep learning fields like Natural Language Processing, Computer Vision or Speech processing. It may encourage the direct use of Transformers in the constrained tasks, without questioning whether it will yield the same benefits as in standard tasks. Given specific constraints, it is essential to evaluate the relevance of transformer models. This work questions the suitability of transformers for specific domains. We argue that the high computational requirements and latency issues associated with these models do not align well with streaming applications. Our study promotes the search for alternative strategies to improve efficiency without sacrificing performance. In light of this observation, our paper critically examines the usefulness of transformer architecture in such constrained environments. As a first attempt, we show that the computational cost for Streaming Automatic Speech Recognition (ASR) can be reduced using deformable convolution instead of Self-Attention. Furthermore, we show that Self-Attention mechanisms can be entirely removed and not replaced, without observing significant degradation in the Word Error Rate.
Recent advances in LLM-based ASR connect frozen speech encoders with Large Language Models (LLMs) via lightweight projectors. While effective in monolingual settings, a single projector struggles to capture the diverse acoustic-to-semantic mappings required for multilingual ASR. To address this, we propose SMEAR-MoE, a stabilized Mixture-of-Experts projector that ensures dense gradient flow to all experts, preventing expert collapse while enabling cross-lingual sharing. We systematically compare monolithic, static multi-projector, and dynamic MoE designs across four Indic languages (Hindi, Marathi, Tamil, Telugu). Our SMEAR-MoE achieves strong performance, delivering upto a 7.6% relative WER reduction over the single-projector baseline, while maintaining comparable runtime efficiency. Analysis of expert routing further shows linguistically meaningful specialization, with related languages sharing experts. These results demonstrate that stable multi-expert projectors are key to scalable and robust multilingual ASR.
This work presents a speech-to-text system "Pisets" for scientists and journalists which is based on a three-component architecture aimed at improving speech recognition accuracy while minimizing errors and hallucinations associated with the Whisper model. The architecture comprises primary recognition using Wav2Vec2, false positive filtering via the Audio Spectrogram Transformer (AST), and final speech recognition through Whisper. The implementation of curriculum learning methods and the utilization of diverse Russian-language speech corpora significantly enhanced the system's effectiveness. Additionally, advanced uncertainty modeling techniques were introduced, contributing to further improvements in transcription quality. The proposed approaches ensure robust transcribing of long audio data across various acoustic conditions compared to WhisperX and the usual Whisper model. The source code of "Pisets" system is publicly available at GitHub: https://github.com/bond005/pisets.
Speech separation (SS) has advanced significantly with neural network-based methods, showing improved performance on signal-level metrics. However, these methods often struggle to maintain speech intelligibility in the separated signals, which can negatively affect the performance of downstream tasks such as speech recognition. In this work, we propose SLM-SS, a novel approach that applies speech language models to SS, aiming to enhance the intelligibility and coherence of the separated signals. We frame SS as discrete multi-codebook sequence generation, using Encoder-Decoder models to map quantized speech mixtures to target tokens. In addition to the autoregressive modeling strategy, we introduce a non-autoregressive model to improve decoding efficiency for residual tokens. Experimental results on the LibriMix dataset demonstrate that our approach shows significantly better preservation of speech intelligibility, leading to improved linguistic consistency in a variety of downstream tasks compared to existing approaches.
Edge devices operate in constrained and varying resource settings, requiring dynamic architectures that can adapt to limitations of the available resources. To meet such demands, layer dropping ($\mathcal{LD}$) approach is typically used to transform static models into dynamic ones by skipping parts of the network along with reducing overall computational complexity. However, existing $\mathcal{LD}$ methods greatly impact the dynamic model's performance for low and high dropping cases, deteriorating the performance-computation trade-off. To this end, we propose a distillation-based layer dropping (DLD) framework that effectively combines the capabilities of knowledge distillation and $\mathcal{LD}$ in an end-to-end fashion, thereby achieving state-of-the-art performance for dynamic speech networks. Comprehensive experimentation utilizing well-known speech recognition methods, including conformer and WavLM, on three public benchmarks demonstrates the effectiveness of our framework, reducing the word error rate by $9.32\%$ and $2.25\%$ for high and no dropping cases with $33.3\%$ reduction in training time.
Speaker-attributed automatic speech recognition (ASR) in multi-speaker environments remains a major challenge. While some approaches achieve strong performance when fine-tuned on specific domains, few systems generalize well across out-of-domain datasets. Our prior work, Diarization-Conditioned Whisper (DiCoW), leverages speaker diarization outputs as conditioning information and, with minimal fine-tuning, demonstrated strong multilingual and multi-domain performance. In this paper, we address a key limitation of DiCoW: ambiguity in Silence-Target-Non-target-Overlap (STNO) masks, where two or more fully overlapping speakers may have nearly identical conditioning despite differing transcriptions. We introduce SE-DiCoW (Self-Enrolled Diarization-Conditioned Whisper), which uses diarization output to locate an enrollment segment anywhere in the conversation where the target speaker is most active. This enrollment segment is used as fixed conditioning via cross-attention at each encoder layer. We further refine DiCoW with improved data segmentation, model initialization, and augmentation. Together, these advances yield substantial gains: SE-DiCoW reduces macro-averaged tcpWER by 52.4% relative to the original DiCoW on the EMMA MT-ASR benchmark.
Evasion attacks pose significant threats to AI systems, exploiting vulnerabilities in machine learning models to bypass detection mechanisms. The widespread use of voice data, including deepfakes, in promising future industries is currently hindered by insufficient legal frameworks. Adversarial attack methods have emerged as the most effective countermeasure against the indiscriminate use of such data. This research introduces masked energy perturbation (MEP), a novel approach using power spectrum for energy masking of original voice data. MEP applies masking to small energy regions in the frequency domain before generating adversarial perturbations, targeting areas less noticeable to the human auditory model. The study primarily employs advanced speaker recognition models, including ECAPA-TDNN and ResNet34, which have shown remarkable performance in speaker verification tasks. The proposed MEP method demonstrated strong performance in both audio quality and evasion effectiveness. The energy masking approach effectively minimizes the perceptual evaluation of speech quality (PESQ) degradation, indicating that minimal perceptual distortion occurs to the human listener despite the adversarial perturbations. Specifically, in the PESQ evaluation, the relative performance of the MEP method was 26.68% when compared to the fast gradient sign method (FGSM) and iterative FGSM.
Lipreading, the technology of decoding spoken content from silent videos of lip movements, holds significant application value in fields such as public security. However, due to the subtle nature of articulatory gestures, existing lipreading methods often suffer from limited feature discriminability and poor generalization capabilities. To address these challenges, this paper delves into the purification of visual features from temporal, spatial, and channel dimensions. We propose a novel method named Multi-Attention Lipreading Network(MA-LipNet). The core of MA-LipNet lies in its sequential application of three dedicated attention modules. Firstly, a \textit{Channel Attention (CA)} module is employed to adaptively recalibrate channel-wise features, thereby mitigating interference from less informative channels. Subsequently, two spatio-temporal attention modules with distinct granularities-\textit{Joint Spatial-Temporal Attention (JSTA)} and \textit{Separate Spatial-Temporal Attention (SSTA)}-are leveraged to suppress the influence of irrelevant pixels and video frames. The JSTA module performs a coarse-grained filtering by computing a unified weight map across the spatio-temporal dimensions, while the SSTA module conducts a more fine-grained refinement by separately modeling temporal and spatial attentions. Extensive experiments conducted on the CMLR and GRID datasets demonstrate that MA-LipNet significantly reduces the Character Error Rate (CER) and Word Error Rate (WER), validating its effectiveness and superiority over several state-of-the-art methods. Our work highlights the importance of multi-dimensional feature refinement for robust visual speech recognition.