Abstract:Accurate predictive turn-taking models (PTTMs) are essential for naturalistic human-robot interaction. However, little is known about their performance in noise. This study therefore explores PTTM performance in types of noise likely to be encountered once deployed. Our analyses reveal PTTMs are highly sensitive to noise. Hold/shift accuracy drops from 84% in clean speech to just 52% in 10 dB music noise. Training with noisy data enables a multimodal PTTM, which includes visual features to better exploit visual cues, with 72% accuracy in 10 dB music noise. The multimodal PTTM outperforms the audio-only PTTM across all noise types and SNRs, highlighting its ability to exploit visual cues; however, this does not always generalise to new types of noise. Analysis also reveals that successful training relies on accurate transcription, limiting the use of ASR-derived transcriptions to clean conditions. We make code publicly available for future research.
Abstract:Turn-taking is richly multimodal. Predictive turn-taking models (PTTMs) facilitate naturalistic human-robot interaction, yet most rely solely on speech. We introduce MM-VAP, a multimodal PTTM which combines speech with visual cues including facial expression, head pose and gaze. We find that it outperforms the state-of-the-art audio-only in videoconferencing interactions (84% vs. 79% hold/shift prediction accuracy). Unlike prior work which aggregates all holds and shifts, we group by duration of silence between turns. This reveals that through the inclusion of visual features, MM-VAP outperforms a state-of-the-art audio-only turn-taking model across all durations of speaker transitions. We conduct a detailed ablation study, which reveals that facial expression features contribute the most to model performance. Thus, our working hypothesis is that when interlocutors can see one another, visual cues are vital for turn-taking and must therefore be included for accurate turn-taking prediction. We additionally validate the suitability of automatic speech alignment for PTTM training using telephone speech. This work represents the first comprehensive analysis of multimodal PTTMs. We discuss implications for future work and make all code publicly available.
Abstract:Self-supervised learning (SSL) is used in deep learning to train on large datasets without the need for expensive labelling of the data. Recently, large Automatic Speech Recognition (ASR) models such as XLS-R have utilised SSL to train on over one hundred different languages simultaneously. However, deeper investigation shows that the bulk of the training data for XLS-R comes from a small number of languages. Biases learned through SSL have been shown to exist in multiple domains, but language bias in multilingual SSL ASR has not been thoroughly examined. In this paper, we utilise the Lottery Ticket Hypothesis (LTH) to identify language-specific subnetworks within XLS-R and test the performance of these subnetworks on a variety of different languages. We are able to show that when fine-tuning, XLS-R bypasses traditional linguistic knowledge and builds only on weights learned from the languages with the largest data contribution to the pretraining data.
Abstract:Audio-Visual Speech Recognition (AVSR) combines auditory and visual speech cues to enhance the accuracy and robustness of speech recognition systems. Recent advancements in AVSR have improved performance in noisy environments compared to audio-only counterparts. However, the true extent of the visual contribution, and whether AVSR systems fully exploit the available cues in the visual domain, remains unclear. This paper assesses AVSR systems from a different perspective, by considering human speech perception. We use three systems: Auto-AVSR, AVEC and AV-RelScore. We first quantify the visual contribution using effective SNR gains at 0 dB and then investigate the use of visual information in terms of its temporal distribution and word-level informativeness. We show that low WER does not guarantee high SNR gains. Our results suggest that current methods do not fully exploit visual information, and we recommend future research to report effective SNR gains alongside WERs.
Abstract:Advancing the design of robust hearing aid (HA) voice control is crucial to increase the HA use rate among hard of hearing people as well as to improve HA users' experience. In this work, we contribute towards this goal by, first, presenting a novel HA speech dataset consisting of noisy own voice captured by 2 behind-the-ear (BTE) and 1 in-ear-canal (IEC) microphones. Second, we provide baseline HA voice control results from the evaluation of light, state-of-the-art keyword spotting models utilizing different combinations of HA microphone signals. Experimental results show the benefits of exploiting bandwidth-limited bone-conducted speech (BCS) from the IEC microphone to achieve noise-robust HA voice control. Furthermore, results also demonstrate that voice control performance can be boosted by assisting BCS by the broader-bandwidth BTE microphone signals. Aiming at setting a baseline upon which the scientific community can continue to progress, the HA noisy speech dataset has been made publicly available.
Abstract:While much of modern speech and audio processing relies on deep neural networks trained using fixed audio representations, recent studies suggest great potential in acoustic frontends learnt jointly with a backend. In this study, we focus specifically on learnable filterbanks. Prior studies have reported that in frontends using learnable filterbanks initialised to a mel scale, the learned filters do not differ substantially from their initialisation. Using a Gabor-based filterbank, we investigate the sensitivity of a learnable filterbank to its initialisation using several initialisation strategies on two audio tasks: voice activity detection and bird species identification. We use the Jensen-Shannon Distance and analysis of the learned filters before and after training. We show that although performance is overall improved, the filterbanks exhibit strong sensitivity to their initialisation strategy. The limited movement from initialised values suggests that alternate optimisation strategies may allow a learnable frontend to reach better overall performance.
Abstract:Autonomous recording units and passive acoustic monitoring present minimally intrusive methods of collecting bioacoustics data. Combining this data with species agnostic bird activity detection systems enables the monitoring of activity levels of bird populations. Unfortunately, variability in ambient noise levels and subject distance contribute to difficulties in accurately detecting bird activity in recordings. The choice of acoustic frontend directly affects the impact these issues have on system performance. In this paper, we benchmark traditional fixed-parameter acoustic frontends against the new generation of learnable frontends on a wide-ranging bird audio detection task using data from the DCASE2018 BAD Challenge. We observe that Per-Channel Energy Normalization is the best overall performer, achieving an accuracy of 89.9%, and that in general learnable frontends significantly outperform traditional methods. We also identify challenges in learning filterbanks for bird audio.
Abstract:This paper explores low resource classifiers and features for the detection of bird activity, suitable for embedded Automatic Recording Units which are typically deployed for long term remote monitoring of bird populations. Features include low-level spectral parameters, statistical moments on pitch samples, and features derived from amplitude modulation. Performance is evaluated on several lightweight classifiers using the NIPS4Bplus dataset. Our experiments show that random forest classifiers perform best on this task, achieving an accuracy of 0.721 and an F1-Score of 0.604. We compare the results of our system against both a Convolutional Neural Network based detector, and standard MFCC features. Our experiments show that we can achieve equal or better performance in most metrics using features and models with a smaller computational cost and which are suitable for edge deployment.
Abstract:This report presents deep learning and data augmentation techniques used by a system entered into the Few-Shot Bioacoustic Event Detection for the DCASE2021 Challenge. The remit was to develop a few-shot learning system for animal (mammal and bird) vocalisations. Participants were tasked with developing a method that can extract information from five exemplar vocalisations, or shots, of mammals or birds and detect and classify sounds in field recordings. In the system described in this report, prototypical networks are used to learn a metric space, from which classification is performed by computing the distance of a query point to class prototypes, classifying based on shortest distance. We describe the architecture of this network, feature extraction methods, and data augmentation performed on the given dataset and compare our work to the challenge's baseline networks.
Abstract:In recent years, Automatic Speech Recognition (ASR) technology has approached human-level performance on conversational speech under relatively clean listening conditions. In more demanding situations involving distant microphones, overlapped speech, background noise, or natural dialogue structures, the ASR error rate is at least an order of magnitude higher. The visual modality of speech carries the potential to partially overcome these challenges and contribute to the sub-tasks of speaker diarisation, voice activity detection, and the recovery of the place of articulation, and can compensate for up to 15dB of noise on average. This article develops AV Taris, a fully differentiable neural network model capable of decoding audio-visual speech in real time. We achieve this by connecting two recently proposed models for audio-visual speech integration and online speech recognition, namely AV Align and Taris. We evaluate AV Taris under the same conditions as AV Align and Taris on one of the largest publicly available audio-visual speech datasets, LRS2. Our results show that AV Taris is superior to the audio-only variant of Taris, demonstrating the utility of the visual modality to speech recognition within the real time decoding framework defined by Taris. Compared to an equivalent Transformer-based AV Align model that takes advantage of full sentences without meeting the real-time requirement, we report an absolute degradation of approximately 3% with AV Taris. As opposed to the more popular alternative for online speech recognition, namely the RNN Transducer, Taris offers a greatly simplified fully differentiable training pipeline. As a consequence, AV Taris has the potential to popularise the adoption of Audio-Visual Speech Recognition (AVSR) technology and overcome the inherent limitations of the audio modality in less optimal listening conditions.