We explore the need for more comprehensive and precise evaluation techniques for generative artificial intelligence (GenAI) in text summarization tasks, specifically in the area of opinion summarization. Traditional methods, which leverage automated metrics to compare machine-generated summaries from a collection of opinion pieces, e.g. product reviews, have shown limitations due to the paradigm shift introduced by large language models (LLM). This paper addresses these shortcomings by proposing a novel, fully automated methodology for assessing the factual consistency of such summaries. The method is based on measuring the similarity between the claims in a given summary with those from the original reviews, measuring the coverage and consistency of the generated summary. To do so, we rely on a simple approach to extract factual assessment from texts that we then compare and summarize in a suitable score. We demonstrate that the proposed metric attributes higher scores to similar claims, regardless of whether the claim is negated, paraphrased, or expanded, and that the score has a high correlation to human judgment when compared to state-of-the-art metrics.
Conversational search systems increasingly employ clarifying questions to refine user queries and improve the search experience. Previous studies have demonstrated the usefulness of text-based clarifying questions in enhancing both retrieval performance and user experience. While images have been shown to improve retrieval performance in various contexts, their impact on user performance when incorporated into clarifying questions remains largely unexplored. We conduct a user study with 73 participants to investigate the role of images in conversational search, specifically examining their effects on two search-related tasks: (i) answering clarifying questions and (ii) query reformulation. We compare the effect of multimodal and text-only clarifying questions in both tasks within a conversational search context from various perspectives. Our findings reveal that while participants showed a strong preference for multimodal questions when answering clarifying questions, preferences were more balanced in the query reformulation task. The impact of images varied with both task type and user expertise. In answering clarifying questions, images helped maintain engagement across different expertise levels, while in query reformulation they led to more precise queries and improved retrieval performance. Interestingly, for clarifying question answering, text-only setups demonstrated better user performance as they provided more comprehensive textual information in the absence of images. These results provide valuable insights for designing effective multimodal conversational search systems, highlighting that the benefits of visual augmentation are task-dependent and should be strategically implemented based on the specific search context and user characteristics.
While LLaDA2.0 showcased the scaling potential of 100B-level block-diffusion models and their inherent parallelization, the delicate equilibrium between decoding speed and generation quality has remained an elusive frontier. Today, we unveil LLaDA2.1, a paradigm shift designed to transcend this trade-off. By seamlessly weaving Token-to-Token (T2T) editing into the conventional Mask-to-Token (M2T) scheme, we introduce a joint, configurable threshold-decoding scheme. This structural innovation gives rise to two distinct personas: the Speedy Mode (S Mode), which audaciously lowers the M2T threshold to bypass traditional constraints while relying on T2T to refine the output; and the Quality Mode (Q Mode), which leans into conservative thresholds to secure superior benchmark performances with manageable efficiency degrade. Furthering this evolution, underpinned by an expansive context window, we implement the first large-scale Reinforcement Learning (RL) framework specifically tailored for dLLMs, anchored by specialized techniques for stable gradient estimation. This alignment not only sharpens reasoning precision but also elevates instruction-following fidelity, bridging the chasm between diffusion dynamics and complex human intent. We culminate this work by releasing LLaDA2.1-Mini (16B) and LLaDA2.1-Flash (100B). Across 33 rigorous benchmarks, LLaDA2.1 delivers strong task performance and lightning-fast decoding speed. Despite its 100B volume, on coding tasks it attains an astounding 892 TPS on HumanEval+, 801 TPS on BigCodeBench, and 663 TPS on LiveCodeBench.
Fairness is a crucial concern for generative models, which not only reflect but can also amplify societal and cultural biases. Existing fairness notions for generative models are largely adapted from classification and focus on balancing the probability of generating samples from each sensitive group. We show that such criteria are brittle, as they can be met even when different sensitive groups are modeled with widely varying quality. To address this limitation, we introduce a new fairness definition for generative models, termed as equalized generative treatment (EGT), which requires comparable generation quality across all sensitive groups, with quality measured via a reference f-divergence. We further analyze the trade-offs induced by EGT, demonstrating that enforcing fairness constraints necessarily couples the overall model quality to that of the most challenging group to approximate. This indicates that a simple yet efficient min-max fine-tuning method should be able to balance f-divergences across sensitive groups to satisfy EGT. We validate this theoretical insight through a set of experiments on both image and text generation tasks. We demonstrate that min-max methods consistently achieve fairer outcomes compared to other approaches from the literature, while maintaining competitive overall performance for both tasks.
Multilingual large language models (LLMs) have gained significant popularity for their ability to process and generate text across multiple languages. However, deploying these models in production can be inefficient when only a subset of the supported languages is of interest. There has been some research conducted on identifying whether machine translation models have language-specific or language-agnostic heads, however no research has been conducted for multilingual LLMs, to the best of our knowledge, that as we know are capable of performing diverse tasks beyond just translation. This paper explores whether multilingual LLMs have specialized language attention heads for each language, and investigates the possibility of removing language-specific heads for unwanted languages without degrading performance in the targeted languages. Our findings could inform more efficient deployment strategies for multilingual LLMs, enabling reduced model complexity while maintaining high accuracy for targeted languages.
Reinforcement Learning is increasingly applied to logistics, scheduling, and recommender systems, but standard algorithms struggle with the curse of dimensionality in such large discrete action spaces. Existing algorithms typically rely on restrictive grid-based structures or computationally expensive nearest-neighbor searches, limiting their effectiveness in high-dimensional or irregularly structured domains. We propose Distance-Guided Reinforcement Learning (DGRL), combining Sampled Dynamic Neighborhoods (SDN) and Distance-Based Updates (DBU) to enable efficient RL in spaces with up to 10$^\text{20}$ actions. Unlike prior methods, SDN leverages a semantic embedding space to perform stochastic volumetric exploration, provably providing full support over a local trust region. Complementing this, DBU transforms policy optimization into a stable regression task, decoupling gradient variance from action space cardinality and guaranteeing monotonic policy improvement. DGRL naturally generalizes to hybrid continuous-discrete action spaces without requiring hierarchical dependencies. We demonstrate performance improvements of up to 66% against state-of-the-art benchmarks across regularly and irregularly structured environments, while simultaneously improving convergence speed and computational complexity.
While generative models have become powerful tools for image synthesis, they are typically optimized for executing carefully crafted textual prompts, offering limited support for the open-ended visual exploration that often precedes idea formation. In contrast, designers frequently draw inspiration from loosely connected visual references, seeking emergent connections that spark new ideas. We propose Inspiration Seeds, a generative framework that shifts image generation from final execution to exploratory ideation. Given two input images, our model produces diverse, visually coherent compositions that reveal latent relationships between inputs, without relying on user-specified text prompts. Our approach is feed-forward, trained on synthetic triplets of decomposed visual aspects derived entirely through visual means: we use CLIP Sparse Autoencoders to extract editing directions in CLIP latent space and isolate concept pairs. By removing the reliance on language and enabling fast, intuitive recombination, our method supports visual ideation at the early and ambiguous stages of creative work.
We present Kissan-Dost, a multilingual, sensor-grounded conversational system that turns live on-farm measurements and weather into plain-language guidance delivered over WhatsApp text or voice. The system couples commodity soil and climate sensors with retrieval-augmented generation, then enforces grounding, traceability, and proactive alerts through a modular pipeline. In a 90-day, two-site pilot with five participants, we ran three phases (baseline, dashboard only, chatbot only). Dashboard engagement was sporadic and faded, while the chatbot was used nearly daily and informed concrete actions. Controlled tests on 99 sensor-grounded crop queries achieved over 90 percent correctness with subsecond end-to-end latency, alongside high-quality translation outputs. Results show that careful last-mile integration, not novel circuitry, unlocks the latent value of existing Agri-IoT for smallholders.
Text-to-motion generation, a rapidly evolving field in computer vision, aims to produce realistic and text-aligned motion sequences. Current methods primarily focus on spatial-temporal modeling or independent frequency domain analysis, lacking a unified framework for joint optimization across spatial, temporal, and frequency domains. This limitation hinders the model's ability to leverage information from all domains simultaneously, leading to suboptimal generation quality. Additionally, in motion generation frameworks, motion-irrelevant cues caused by noise are often entangled with features that contribute positively to generation, thereby leading to motion distortion. To address these issues, we propose Tri-Domain Causal Text-to-Motion Generation (TriC-Motion), a novel diffusion-based framework integrating spatial-temporal-frequency-domain modeling with causal intervention. TriC-Motion includes three core modeling modules for domain-specific modeling, namely Temporal Motion Encoding, Spatial Topology Modeling, and Hybrid Frequency Analysis. After comprehensive modeling, a Score-guided Tri-domain Fusion module integrates valuable information from the triple domains, simultaneously ensuring temporal consistency, spatial topology, motion trends, and dynamics. Moreover, the Causality-based Counterfactual Motion Disentangler is meticulously designed to expose motion-irrelevant cues to eliminate noise, disentangling the real modeling contributions of each domain for superior generation. Extensive experimental results validate that TriC-Motion achieves superior performance compared to state-of-the-art methods, attaining an outstanding R@1 of 0.612 on the HumanML3D dataset. These results demonstrate its capability to generate high-fidelity, coherent, diverse, and text-aligned motion sequences. Code is available at: https://caoyiyang1105.github.io/TriC-Motion/.
Composed Image Retrieval (CIR) enables image retrieval by combining multiple query modalities, but existing benchmarks predominantly focus on general-domain imagery and rely on reference images with short textual modifications. As a result, they provide limited support for retrieval scenarios that require fine-grained semantic reasoning, structured visual understanding, and domain-specific knowledge. In this work, we introduce CIRThan, a sketch+text Composed Image Retrieval dataset for Thangka imagery, a culturally grounded and knowledge-specific visual domain characterized by complex structures, dense symbolic elements, and domain-dependent semantic conventions. CIRThan contains 2,287 high-quality Thangka images, each paired with a human-drawn sketch and hierarchical textual descriptions at three semantic levels, enabling composed queries that jointly express structural intent and multi-level semantic specification. We provide standardized data splits, comprehensive dataset analysis, and benchmark evaluations of representative supervised and zero-shot CIR methods. Experimental results reveal that existing CIR approaches, largely developed for general-domain imagery, struggle to effectively align sketch-based abstractions and hierarchical textual semantics with fine-grained Thangka images, particularly without in-domain supervision. We believe CIRThan offers a valuable benchmark for advancing sketch+text CIR, hierarchical semantic modeling, and multimodal retrieval in cultural heritage and other knowledge-specific visual domains. The dataset is publicly available at https://github.com/jinyuxu-whut/CIRThan.