Abstract:Large language models (LLMs) are commonly aligned with human preferences using reinforcement learning from human feedback (RLHF). In this method, LLM policies are generally optimized through reward maximization with Kullback-Leibler (KL) divergence regularization of the reference policy. However, KL and its $f$-divergence variants only compare token probabilities at identical indices, failing to capture semantic similarity. We propose Wasserstein Policy Regularization (WPR), a semantic-aware regularization for the RLHF framework based on the entropy-regularized Wasserstein distance, which incorporates the geometry of the token space. The dual formulation of the distance expresses the regularization as penalty terms applied to the reward via optimal dual variables, which yield a tractable objective compatible with standard RL algorithms. Empirically, our method outperforms KL- and $f$-divergence-based baselines, demonstrating the benefits of semantic-aware policy distances for alignment. Our code is available at https://github.com/aailab-kaist/WPR.
Abstract:Recent advances in text-to-image generative models have raised concerns about their potential to produce harmful content when provided with malicious input text prompts. To address this issue, two main approaches have emerged: (1) fine-tuning the model to unlearn harmful concepts and (2) training-free guidance methods that leverage negative prompts. However, we observe that combining these two orthogonal approaches often leads to marginal or even degraded defense performance. This observation indicates a critical incompatibility between two paradigms, which hinders their combined effectiveness. In this work, we address this issue by proposing a conceptually simple yet experimentally robust method: replacing the negative prompts used in training-free methods with implicit negative embeddings obtained through concept inversion. Our method requires no modification to either approach and can be easily integrated into existing pipelines. We experimentally validate its effectiveness on nudity and violence benchmarks, demonstrating consistent improvements in defense success rate while preserving the core semantics of input prompts.