Abstract:A central goal for mechanistic interpretability has been to identify the right units of analysis in large language models (LLMs) that causally explain their outputs. While early work focused on individual neurons, evidence that neurons often encode multiple concepts has motivated a shift toward analyzing directions in activation space. A key question is how to find directions that capture interpretable features in an unsupervised manner. Current methods rely on dictionary learning with sparse autoencoders (SAEs), commonly trained over residual stream activations to learn directions from scratch. However, SAEs often struggle in causal evaluations and lack intrinsic interpretability, as their learning is not explicitly tied to the computations of the model. Here, we tackle these limitations by directly decomposing MLP activations with semi-nonnegative matrix factorization (SNMF), such that the learned features are (a) sparse linear combinations of co-activated neurons, and (b) mapped to their activating inputs, making them directly interpretable. Experiments on Llama 3.1, Gemma 2 and GPT-2 show that SNMF derived features outperform SAEs and a strong supervised baseline (difference-in-means) on causal steering, while aligning with human-interpretable concepts. Further analysis reveals that specific neuron combinations are reused across semantically-related features, exposing a hierarchical structure in the MLP's activation space. Together, these results position SNMF as a simple and effective tool for identifying interpretable features and dissecting concept representations in LLMs.
Abstract:Variable binding -- the ability to associate variables with values -- is fundamental to symbolic computation and cognition. Although classical architectures typically implement variable binding via addressable memory, it is not well understood how modern neural networks lacking built-in binding operations may acquire this capacity. We investigate this by training a Transformer to dereference queried variables in symbolic programs where variables are assigned either numerical constants or other variables. Each program requires following chains of variable assignments up to four steps deep to find the queried value, and also contains irrelevant chains of assignments acting as distractors. Our analysis reveals a developmental trajectory with three distinct phases during training: (1) random prediction of numerical constants, (2) a shallow heuristic prioritizing early variable assignments, and (3) the emergence of a systematic mechanism for dereferencing assignment chains. Using causal interventions, we find that the model learns to exploit the residual stream as an addressable memory space, with specialized attention heads routing information across token positions. This mechanism allows the model to dynamically track variable bindings across layers, resulting in accurate dereferencing. Our results show how Transformer models can learn to implement systematic variable binding without explicit architectural support, bridging connectionist and symbolic approaches.
Abstract:How do language models (LMs) represent characters' beliefs, especially when those beliefs may differ from reality? This question lies at the heart of understanding the Theory of Mind (ToM) capabilities of LMs. We analyze Llama-3-70B-Instruct's ability to reason about characters' beliefs using causal mediation and abstraction. We construct a dataset that consists of simple stories where two characters each separately change the state of two objects, potentially unaware of each other's actions. Our investigation uncovered a pervasive algorithmic pattern that we call a lookback mechanism, which enables the LM to recall important information when it becomes necessary. The LM binds each character-object-state triple together by co-locating reference information about them, represented as their Ordering IDs (OIs) in low rank subspaces of the state token's residual stream. When asked about a character's beliefs regarding the state of an object, the binding lookback retrieves the corresponding state OI and then an answer lookback retrieves the state token. When we introduce text specifying that one character is (not) visible to the other, we find that the LM first generates a visibility ID encoding the relation between the observing and the observed character OIs. In a visibility lookback, this ID is used to retrieve information about the observed character and update the observing character's beliefs. Our work provides insights into the LM's belief tracking mechanisms, taking a step toward reverse-engineering ToM reasoning in LMs.
Abstract:How can we know whether new mechanistic interpretability methods achieve real improvements? In pursuit of meaningful and lasting evaluation standards, we propose MIB, a benchmark with two tracks spanning four tasks and five models. MIB favors methods that precisely and concisely recover relevant causal pathways or specific causal variables in neural language models. The circuit localization track compares methods that locate the model components - and connections between them - most important for performing a task (e.g., attribution patching or information flow routes). The causal variable localization track compares methods that featurize a hidden vector, e.g., sparse autoencoders (SAEs) or distributed alignment search (DAS), and locate model features for a causal variable relevant to the task. Using MIB, we find that attribution and mask optimization methods perform best on circuit localization. For causal variable localization, we find that the supervised DAS method performs best, while SAE features are not better than neurons, i.e., standard dimensions of hidden vectors. These findings illustrate that MIB enables meaningful comparisons of methods, and increases our confidence that there has been real progress in the field.
Abstract:Mechanistic interpretability aims to reverse engineer neural networks by uncovering which high-level algorithms they implement. Causal abstraction provides a precise notion of when a network implements an algorithm, i.e., a causal model of the network contains low-level features that realize the high-level variables in a causal model of the algorithm. A typical problem in practical settings is that the algorithm is not an entirely faithful abstraction of the network, meaning it only partially captures the true reasoning process of a model. We propose a solution where we combine different simple high-level models to produce a more faithful representation of the network. Through learning this combination, we can model neural networks as being in different computational states depending on the input provided, which we show is more accurate to GPT 2-small fine-tuned on two toy tasks. We observe a trade-off between the strength of an interpretability hypothesis, which we define in terms of the number of inputs explained by the high-level models, and its faithfulness, which we define as the interchange intervention accuracy. Our method allows us to modulate between the two, providing the most accurate combination of models that describe the behavior of a neural network given a faithfulness level.
Abstract:Mechanistic interpretability has made great strides in identifying neural network features (e.g., directions in hidden activation space) that mediate concepts(e.g., the birth year of a person) and enable predictable manipulation. Distributed alignment search (DAS) leverages supervision from counterfactual data to learn concept features within hidden states, but DAS assumes we can afford to conduct a brute force search over potential feature locations. To address this, we present HyperDAS, a transformer-based hypernetwork architecture that (1) automatically locates the token-positions of the residual stream that a concept is realized in and (2) constructs features of those residual stream vectors for the concept. In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance on the RAVEL benchmark for disentangling concepts in hidden states. In addition, we review the design decisions we made to mitigate the concern that HyperDAS (like all powerful interpretabilty methods) might inject new information into the target model rather than faithfully interpreting it.
Abstract:Fine-grained steering of language model outputs is essential for safety and reliability. Prompting and finetuning are widely used to achieve these goals, but interpretability researchers have proposed a variety of representation-based techniques as well, including sparse autoencoders (SAEs), linear artificial tomography, supervised steering vectors, linear probes, and representation finetuning. At present, there is no benchmark for making direct comparisons between these proposals. Therefore, we introduce AxBench, a large-scale benchmark for steering and concept detection, and report experiments on Gemma-2-2B and 9B. For steering, we find that prompting outperforms all existing methods, followed by finetuning. For concept detection, representation-based methods such as difference-in-means, perform the best. On both evaluations, SAEs are not competitive. We introduce a novel weakly-supervised representational method (Rank-1 Representation Finetuning; ReFT-r1), which is competitive on both tasks while providing the interpretability advantages that prompting lacks. Along with AxBench, we train and publicly release SAE-scale feature dictionaries for ReFT-r1 and DiffMean.
Abstract:Mechanistic interpretability aims to understand the computational mechanisms underlying neural networks' capabilities in order to accomplish concrete scientific and engineering goals. Progress in this field thus promises to provide greater assurance over AI system behavior and shed light on exciting scientific questions about the nature of intelligence. Despite recent progress toward these goals, there are many open problems in the field that require solutions before many scientific and practical benefits can be realized: Our methods require both conceptual and practical improvements to reveal deeper insights; we must figure out how best to apply our methods in pursuit of specific goals; and the field must grapple with socio-technical challenges that influence and are influenced by our work. This forward-facing review discusses the current frontier of mechanistic interpretability and the open problems that the field may benefit from prioritizing.
Abstract:Automated interpretability pipelines generate natural language descriptions for the concepts represented by features in large language models (LLMs), such as plants or the first word in a sentence. These descriptions are derived using inputs that activate the feature, which may be a dimension or a direction in the model's representation space. However, identifying activating inputs is costly, and the mechanistic role of a feature in model behavior is determined both by how inputs cause a feature to activate and by how feature activation affects outputs. Using steering evaluations, we reveal that current pipelines provide descriptions that fail to capture the causal effect of the feature on outputs. To fix this, we propose efficient, output-centric methods for automatically generating feature descriptions. These methods use the tokens weighted higher after feature stimulation or the highest weight tokens after applying the vocabulary "unembedding" head directly to the feature. Our output-centric descriptions better capture the causal effect of a feature on model outputs than input-centric descriptions, but combining the two leads to the best performance on both input and output evaluations. Lastly, we show that output-centric descriptions can be used to find inputs that activate features previously thought to be "dead".
Abstract:A popular new method in mechanistic interpretability is to train high-dimensional sparse autoencoders (SAEs) on neuron activations and use SAE features as the atomic units of analysis. However, the body of evidence on whether SAE feature spaces are useful for causal analysis is underdeveloped. In this work, we use the RAVEL benchmark to evaluate whether SAEs trained on hidden representations of GPT-2 small have sets of features that separately mediate knowledge of which country a city is in and which continent it is in. We evaluate four open-source SAEs for GPT-2 small against each other, with neurons serving as a baseline, and linear features learned via distributed alignment search (DAS) serving as a skyline. For each, we learn a binary mask to select features that will be patched to change the country of a city without changing the continent, or vice versa. Our results show that SAEs struggle to reach the neuron baseline, and none come close to the DAS skyline. We release code here: https://github.com/MaheepChaudhary/SAE-Ravel