Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Affective tactile interaction constitutes a fundamental component of human communication. In natural human-human encounters, touch is seldom experienced in isolation; rather, it is inherently multisensory. Individuals not only perceive the physical sensation of touch but also register the accompanying auditory cues generated through contact. The integration of haptic and auditory information forms a rich and nuanced channel for emotional expression. While extensive research has examined how robots convey emotions through facial expressions and speech, their capacity to communicate social gestures and emotions via touch remains largely underexplored. To address this gap, we developed a multimodal interaction system incorporating a 5*5 grid of 25 vibration motors synchronized with audio playback, enabling robots to deliver combined haptic-audio stimuli. In an experiment involving 32 Chinese participants, ten emotions and six social gestures were presented through vibration, sound, or their combination. Participants rated each stimulus on arousal and valence scales. The results revealed that (1) the combined haptic-audio modality significantly enhanced decoding accuracy compared to single modalities; (2) each individual channel-vibration or sound-effectively supported certain emotions recognition, with distinct advantages depending on the emotional expression; and (3) gestures alone were generally insufficient for conveying clearly distinguishable emotions. These findings underscore the importance of multisensory integration in affective human-robot interaction and highlight the complementary roles of haptic and auditory cues in enhancing emotional communication.
Deep neural networks (DNNs) have become ubiquitous thanks to their remarkable ability to model complex patterns across various domains such as computer vision, speech recognition, robotics, etc. While large DNN models are often more accurate than simpler, lightweight models, they are also resource- and energy-hungry. Hence, it is imperative to design methods to reduce reliance on such large models without significant degradation in output accuracy. The high computational cost of these models is often necessary only for a reduced set of challenging inputs, while lighter models can handle most simple ones. Thus, carefully combining properties of existing DNN models in a dynamic, input-based way opens opportunities to improve efficiency without impacting accuracy. In this work, we introduce PERTINENCE, a novel online method designed to analyze the complexity of input features and dynamically select the most suitable model from a pre-trained set to process a given input effectively. To achieve this, we employ a genetic algorithm to explore the training space of an ML-based input dispatcher, enabling convergence towards the Pareto front in the solution space that balances overall accuracy and computational efficiency. We showcase our approach on state-of-the-art Convolutional Neural Networks (CNNs) trained on the CIFAR-10 and CIFAR-100, as well as Vision Transformers (ViTs) trained on TinyImageNet dataset. We report results showing PERTINENCE's ability to provide alternative solutions to existing state-of-the-art models in terms of trade-offs between accuracy and number of operations. By opportunistically selecting among models trained for the same task, PERTINENCE achieves better or comparable accuracy with up to 36% fewer operations.
OpenAI Whisper is a family of robust Automatic Speech Recognition (ASR) models trained on 680,000 hours of audio. However, its encoder-decoder architecture, trained with a sequence-to-sequence objective, lacks native support for streaming ASR. In this paper, we fine-tune Whisper for streaming ASR using the WeNet toolkit by adopting a Unified Two-pass (U2) structure. We introduce an additional Connectionist Temporal Classification (CTC) decoder trained with causal attention masks to generate streaming partial transcripts, while the original Whisper decoder reranks these partial outputs. Our experiments on LibriSpeech and an earnings call dataset demonstrate that, with adequate fine-tuning data, Whisper can be adapted into a capable streaming ASR model. We also introduce a hybrid tokenizer approach, which uses a smaller token space for the CTC decoder while retaining Whisper's original token space for the attention decoder, resulting in improved data efficiency and generalization.
Knowledge extraction through sound is a distinctive property. Visually impaired individuals often rely solely on Braille books and audio recordings provided by NGOs. Due to limitations in these approaches, blind individuals often cannot access books of their choice. Speech is a more effective mode of communication than text for blind and visually impaired persons, as they can easily respond to sounds. This paper presents the development of an accurate, reliable, cost-effective, and user-friendly optical character recognition (OCR)-based speech synthesis system. The OCR-based system has been implemented using Laboratory Virtual Instrument Engineering Workbench (LabVIEW).
Neural front-ends are an appealing alternative to traditional, fixed feature extraction pipelines for automatic speech recognition (ASR) systems since they can be directly trained to fit the acoustic model. However, their performance often falls short compared to classical methods, which we show is largely due to their increased susceptibility to overfitting. This work therefore investigates regularization methods for training ASR models with learnable feature extraction front-ends. First, we examine audio perturbation methods and show that larger relative improvements can be obtained for learnable features. Additionally, we identify two limitations in the standard use of SpecAugment for these front-ends and propose masking in the short time Fourier transform (STFT)-domain as a simple but effective modification to address these challenges. Finally, integrating both regularization approaches effectively closes the performance gap between traditional and learnable features.
This paper presents SHTNet, a lightweight spherical harmonic transform (SHT) based framework, which is designed to address cross-array generalization challenges in multi-channel automatic speech recognition (ASR) through three key innovations. First, SHT based spatial sound field decomposition converts microphone signals into geometry-invariant spherical harmonic coefficients, isolating signal processing from array geometry. Second, the Spatio-Spectral Attention Fusion Network (SSAFN) combines coordinate-aware spatial modeling, refined self-attention channel combinator, and spectral noise suppression without conventional beamforming. Third, Rand-SHT training enhances robustness through random channel selection and array geometry reconstruction. The system achieves 39.26\% average CER across heterogeneous arrays (e.g., circular, square, and binaural) on datasets including Aishell-4, Alimeeting, and XMOS, with 97.1\% fewer computations than conventional neural beamformers.
We propose Speaker-Conditioned Serialized Output Training (SC-SOT), an enhanced SOT-based training for E2E multi-talker ASR. We first probe how SOT handles overlapped speech, and we found the decoder performs implicit speaker separation. We hypothesize this implicit separation is often insufficient due to ambiguous acoustic cues in overlapping regions. To address this, SC-SOT explicitly conditions the decoder on speaker information, providing detailed information about "who spoke when". Specifically, we enhance the decoder by incorporating: (1) speaker embeddings, which allow the model to focus on the acoustic characteristics of the target speaker, and (2) speaker activity information, which guides the model to suppress non-target speakers. The speaker embeddings are derived from a jointly trained E2E speaker diarization model, mitigating the need for speaker enrollment. Experimental results demonstrate the effectiveness of our conditioning approach on overlapped speech.
The scarcity of large-scale classroom speech data has hindered the development of AI-driven speech models for education. Public classroom datasets remain limited, and the lack of a dedicated classroom noise corpus prevents the use of standard data augmentation techniques. In this paper, we introduce a scalable methodology for synthesizing classroom noise using game engines, a framework that extends to other domains. Using this methodology, we present SimClass, a dataset that includes both a synthesized classroom noise corpus and a simulated classroom speech dataset. The speech data is generated by pairing a public children's speech corpus with YouTube lecture videos to approximate real classroom interactions in clean conditions. Our experiments on clean and noisy speech demonstrate that SimClass closely approximates real classroom speech, making it a valuable resource for developing robust speech recognition and enhancement models.
Large-scale ASR models have achieved remarkable gains in accuracy and robustness. However, fairness issues remain largely unaddressed despite their critical importance in real-world applications. In this work, we introduce FairASR, a system that mitigates demographic bias by learning representations that are uninformative about group membership, enabling fair generalization across demographic groups. Leveraging a multi-demographic dataset, our approach employs a gradient reversal layer to suppress demographic-discriminative features while maintaining the ability to capture generalizable speech patterns through an unsupervised contrastive loss. Experimental results show that FairASR delivers competitive overall ASR performance while significantly reducing performance disparities across different demographic groups.
Speech foundation models (SFMs), such as Open Whisper-Style Speech Models (OWSM), are trained on massive datasets to achieve accurate automatic speech recognition. However, even SFMs struggle to accurately recognize rare and unseen words. While contextual biasing (CB) is a promising approach to improve recognition of such words, most CB methods are trained from scratch, resulting in lower performance than SFMs due to the lack of pre-trained knowledge. This paper integrates an existing CB method with OWSM v3.1 while freezing its pre-trained parameters. By leveraging the knowledge embedded in SFMs, the proposed method enables effective CB while preserving the advantages of SFMs, even with a small dataset. Experimental results show that the proposed method improves the biasing word error rate (B-WER) by 11.6 points, resulting in a 0.9 point improvement in the overall WER while reducing the real-time factor by 7.5% compared to the non-biasing baseline on the LibriSpeech 100 test-clean set.