Abstract:Speech Recognition (ASR) due to phoneme distortions and high variability. While self-supervised ASR models like Wav2Vec, HuBERT, and Whisper have shown promise, their effectiveness in dysarthric speech remains unclear. This study systematically benchmarks these models with different decoding strategies, including CTC, seq2seq, and LLM-enhanced decoding (BART,GPT-2, Vicuna). Our contributions include (1) benchmarking ASR architectures for dysarthric speech, (2) introducing LLM-based decoding to improve intelligibility, (3) analyzing generalization across datasets, and (4) providing insights into recognition errors across severity levels. Findings highlight that LLM-enhanced decoding improves dysarthric ASR by leveraging linguistic constraints for phoneme restoration and grammatical correction.
Abstract:Mainstream large vision-language models (LVLMs) inherently encode cultural biases, highlighting the need for diverse multimodal datasets. To address this gap, we introduce Pearl, a large-scale Arabic multimodal dataset and benchmark explicitly designed for cultural understanding. Constructed through advanced agentic workflows and extensive human-in-the-loop annotations by 45 annotators from across the Arab world, Pearl comprises over K multimodal examples spanning ten culturally significant domains covering all Arab countries. We further provide two robust evaluation benchmarks Pearl and Pearl-Lite along with a specialized subset Pearl-X explicitly developed to assess nuanced cultural variations. Comprehensive evaluations on state-of-the-art open and proprietary LVLMs demonstrate that reasoning-centric instruction alignment substantially improves models' cultural grounding compared to conventional scaling methods. Pearl establishes a foundational resource for advancing culturally-informed multimodal modeling research. All datasets and benchmarks are publicly available.