Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Multimodal learning has gained much success in recent years. However, current multimodal fusion methods adopt the attention mechanism of Transformers to implicitly learn the underlying correlation of multimodal features. As a result, the multimodal model cannot capture the essential features of each modality, making it difficult to comprehend complex structures and correlations of multimodal inputs. This paper introduces a novel Multimodal Attention-based Normalizing Flow (MANGO) approach\footnote{The source code of this work will be publicly available.} to developing explicit, interpretable, and tractable multimodal fusion learning. In particular, we propose a new Invertible Cross-Attention (ICA) layer to develop the Normalizing Flow-based Model for multimodal data. To efficiently capture the complex, underlying correlations in multimodal data in our proposed invertible cross-attention layer, we propose three new cross-attention mechanisms: Modality-to-Modality Cross-Attention (MMCA), Inter-Modality Cross-Attention (IMCA), and Learnable Inter-Modality Cross-Attention (LICA). Finally, we introduce a new Multimodal Attention-based Normalizing Flow to enable the scalability of our proposed method to high-dimensional multimodal data. Our experimental results on three different multimodal learning tasks, i.e., semantic segmentation, image-to-image translation, and movie genre classification, have illustrated the state-of-the-art (SoTA) performance of the proposed approach.
Urdu, spoken by over 250 million people, remains critically under-served in multimodal and vision-language research. The absence of large-scale, high-quality datasets has limited the development of Urdu-capable systems and reinforced biases in multilingual vision-language models trained primarily on high-resource languages. To address this gap, we present COCO-Urdu, a large-scale image-caption dataset derived from MS COCO, containing 59,000 images and 319,000 Urdu captions selected through stratified sampling to preserve the original distribution. Captions were translated using SeamlessM4T v2 and validated with a hybrid multimodal quality estimation framework that integrates COMET-Kiwi for translation quality, CLIP-based similarity for visual grounding, and BERTScore with back-translation for semantic consistency; low-scoring captions were iteratively refined using open-source large language models. We further benchmark COCO-Urdu on BLEU, SacreBLEU, and chrF, reporting consistently strong results. To the best of our knowledge, COCO-Urdu is the largest publicly available Urdu captioning dataset. By releasing both the dataset and the quality estimation pipeline, we aim to reduce language bias in multimodal research and establish a foundation for inclusive vision-language systems.
Effective robotic manipulation relies on a precise understanding of 3D scene geometry, and one of the most straightforward ways to acquire such geometry is through multi-view observations. Motivated by this, we present GP3 -- a 3D geometry-aware robotic manipulation policy that leverages multi-view input. GP3 employs a spatial encoder to infer dense spatial features from RGB observations, which enable the estimation of depth and camera parameters, leading to a compact yet expressive 3D scene representation tailored for manipulation. This representation is fused with language instructions and translated into continuous actions via a lightweight policy head. Comprehensive experiments demonstrate that GP3 consistently outperforms state-of-the-art methods on simulated benchmarks. Furthermore, GP3 transfers effectively to real-world robots without depth sensors or pre-mapped environments, requiring only minimal fine-tuning. These results highlight GP3 as a practical, sensor-agnostic solution for geometry-aware robotic manipulation.
Optical Coherence Tomography Angiography (OCTA) and its derived en-face projections provide high-resolution visualization of the retinal and choroidal vasculature, which is critical for the rapid and accurate diagnosis of retinal diseases. However, acquiring high-quality OCTA images is challenging due to motion sensitivity and the high costs associated with software modifications for conventional OCT devices. Moreover, current deep learning methods for OCT-to-OCTA translation often overlook the vascular differences across retinal layers and struggle to reconstruct the intricate, dense vascular details necessary for reliable diagnosis. To overcome these limitations, we propose XOCT, a novel deep learning framework that integrates Cross-Dimensional Supervision (CDS) with a Multi-Scale Feature Fusion (MSFF) network for layer-aware vascular reconstruction. Our CDS module leverages 2D layer-wise en-face projections, generated via segmentation-weighted z-axis averaging, as supervisory signals to compel the network to learn distinct representations for each retinal layer through fine-grained, targeted guidance. Meanwhile, the MSFF module enhances vessel delineation through multi-scale feature extraction combined with a channel reweighting strategy, effectively capturing vascular details at multiple spatial scales. Our experiments on the OCTA-500 dataset demonstrate XOCT's improvements, especially for the en-face projections which are significant for clinical evaluation of retinal pathologies, underscoring its potential to enhance OCTA accessibility, reliability, and diagnostic value for ophthalmic disease detection and monitoring. The code is available at https://github.com/uci-cbcl/XOCT.
Magnetic resonance (MR)-to-computed tomography (CT) translation offers significant advantages, including the elimination of radiation exposure associated with CT scans and the mitigation of imaging artifacts caused by patient motion. The existing approaches are based on single-modality MR-to-CT translation, with limited research exploring multimodal fusion. To address this limitation, we introduce Multi-modal MR to CT (MM2CT) translation method by leveraging multimodal T1- and T2-weighted MRI data, an innovative Mamba-based framework for multi-modal medical image synthesis. Mamba effectively overcomes the limited local receptive field in CNNs and the high computational complexity issues in Transformers. MM2CT leverages this advantage to maintain long-range dependencies modeling capabilities while achieving multi-modal MR feature integration. Additionally, we incorporate a dynamic local convolution module and a dynamic enhancement module to improve MRI-to-CT synthesis. The experiments on a public pelvis dataset demonstrate that MM2CT achieves state-of-the-art performance in terms of Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR). Our code is publicly available at https://github.com/Gots-ch/MM2CT.
The science and clinical practice of medical physics has been integral to the advancement of radiology and radiation therapy for over a century. In parallel, advances in surgery - including intraoperative imaging, registration, and other technologies within the expertise of medical physicists - have advanced primarily in connection to other disciplines, such as biomedical engineering and computer science, and via somewhat distinct translational paths. This review article briefly traces the parallel and convergent evolution of such scientific, engineering, and clinical domains with an eye to a potentially broader, more impactful role of medical physics in research and clinical practice of surgery. A review of image-guided surgery technologies is offered, including intraoperative imaging, tracking / navigation, image registration, visualization, and surgical robotics across a spectrum of surgical applications. Trends and drivers for research and innovation are traced, including federal funding and academic-industry partnership, and some of the major challenges to achieving major clinical impact are described. Opportunities for medical physicists to expand expertise and contribute to the advancement of surgery in the decade ahead are outlined, including research and innovation, data science approaches, improving efficiency through operations research and optimization, improving patient safety, and bringing rigorous quality assurance to technologies and processes in the circle of care for surgery. Challenges abound but appear tractable, including domain knowledge, professional qualifications, and the need for investment and clinical partnership.
Virtual staining, or in-silico-labeling, has been proposed to computationally generate synthetic fluorescence images from label-free images by use of deep learning-based image-to-image translation networks. In most reported studies, virtually stained images have been assessed only using traditional image quality measures such as structural similarity or signal-to-noise ratio. However, in biomedical imaging, images are typically acquired to facilitate an image-based inference, which we refer to as a downstream biological or clinical task. This study systematically investigates the utility of virtual staining for facilitating clinically relevant downstream tasks (like segmentation or classification) with consideration of the capacity of the deep neural networks employed to perform the tasks. Comprehensive empirical evaluations were conducted using biological datasets, assessing task performance by use of label-free, virtually stained, and ground truth fluorescence images. The results demonstrated that the utility of virtual staining is largely dependent on the ability of the segmentation or classification task network to extract meaningful task-relevant information, which is related to the concept of network capacity. Examples are provided in which virtual staining does not improve, or even degrades, segmentation or classification performance when the capacity of the associated task network is sufficiently large. The results demonstrate that task network capacity should be considered when deciding whether to perform virtual staining.




Vision-Language-Action (VLA) models often fail to generalize to novel camera viewpoints, a limitation stemming from their difficulty in inferring robust 3D geometry from 2D images. We introduce GeoAware-VLA, a simple yet effective approach that enhances viewpoint invariance by integrating strong geometric priors into the vision backbone. Instead of training a visual encoder or relying on explicit 3D data, we leverage a frozen, pretrained geometric vision model as a feature extractor. A trainable projection layer then adapts these geometrically-rich features for the policy decoder, relieving it of the burden of learning 3D consistency from scratch. Through extensive evaluations on LIBERO benchmark subsets, we show GeoAware-VLA achieves substantial improvements in zero-shot generalization to novel camera poses, boosting success rates by over 2x in simulation. Crucially, these benefits translate to the physical world; our model shows a significant performance gain on a real robot, especially when evaluated from unseen camera angles. Our approach proves effective across both continuous and discrete action spaces, highlighting that robust geometric grounding is a key component for creating more generalizable robotic agents.




In this paper, we introduce Bangla-Bayanno, an open-ended Visual Question Answering (VQA) Dataset in Bangla, a widely used, low-resource language in multimodal AI research. The majority of existing datasets are either manually annotated with an emphasis on a specific domain, query type, or answer type or are constrained by niche answer formats. In order to mitigate human-induced errors and guarantee lucidity, we implemented a multilingual LLM-assisted translation refinement pipeline. This dataset overcomes the issues of low-quality translations from multilingual sources. The dataset comprises 52,650 question-answer pairs across 4750+ images. Questions are classified into three distinct answer types: nominal (short descriptive), quantitative (numeric), and polar (yes/no). Bangla-Bayanno provides the most comprehensive open-source, high-quality VQA benchmark in Bangla, aiming to advance research in low-resource multimodal learning and facilitate the development of more inclusive AI systems.
Document Image Machine Translation (DIMT) aims to translate text within document images, facing generalization challenges due to limited training data and the complex interplay between visual and textual information. To address these challenges, we introduce M4Doc, a novel single-to-mix modality alignment framework leveraging Multimodal Large Language Models (MLLMs). M4Doc aligns an image-only encoder with the multimodal representations of an MLLM, pre-trained on large-scale document image datasets. This alignment enables a lightweight DIMT model to learn crucial visual-textual correlations during training. During inference, M4Doc bypasses the MLLM, maintaining computational efficiency while benefiting from its multimodal knowledge. Comprehensive experiments demonstrate substantial improvements in translation quality, especially in cross-domain generalization and challenging document image scenarios.