Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Recent advances in self-supervised learning (SSL) have shown tremendous potential for learning 3D point cloud representations without human annotations. However, SSL for 3D point clouds still faces critical challenges due to irregular geometry, shortcut-prone reconstruction, and unbalanced semantics distribution. In this work, we propose DOS (Distilling Observable Softmaps), a novel SSL framework that self-distills semantic relevance softmaps only at observable (unmasked) points. This strategy prevents information leakage from masked regions and provides richer supervision than discrete token-to-prototype assignments. To address the challenge of unbalanced semantics in an unsupervised setting, we introduce Zipfian prototypes and incorporate them using a modified Sinkhorn-Knopp algorithm, Zipf-Sinkhorn, which enforces a power-law prior over prototype usage and modulates the sharpness of the target softmap during training. DOS outperforms current state-of-the-art methods on semantic segmentation and 3D object detection across multiple benchmarks, including nuScenes, Waymo, SemanticKITTI, ScanNet, and ScanNet200, without relying on extra data or annotations. Our results demonstrate that observable-point softmaps distillation offers a scalable and effective paradigm for learning robust 3D representations.
Objective: Although medical imaging datasets are increasingly available, abnormal and annotation-intensive findings critical to lung cancer screening, particularly small pulmonary nodules, remain underrepresented and inconsistently curated. Methods: We introduce NodMAISI, an anatomically constrained, nodule-oriented CT synthesis and augmentation framework trained on a unified multi-source cohort (7,042 patients, 8,841 CTs, 14,444 nodules). The framework integrates: (i) a standardized curation and annotation pipeline linking each CT with organ masks and nodule-level annotations, (ii) a ControlNet-conditioned rectified-flow generator built on MAISI-v2's foundational blocks to enforce anatomy- and lesion-consistent synthesis, and (iii) lesion-aware augmentation that perturbs nodule masks (controlled shrinkage) while preserving surrounding anatomy to generate paired CT variants. Results: Across six public test datasets, NodMAISI improved distributional fidelity relative to MAISI-v2 (real-to-synthetic FID range 1.18 to 2.99 vs 1.69 to 5.21). In lesion detectability analysis using a MONAI nodule detector, NodMAISI substantially increased average sensitivity and more closely matched clinical scans (IMD-CT: 0.69 vs 0.39; DLCS24: 0.63 vs 0.20), with the largest gains for sub-centimeter nodules where MAISI-v2 frequently failed to reproduce the conditioned lesion. In downstream nodule-level malignancy classification trained on LUNA25 and externally evaluated on LUNA16, LNDbv4, and DLCS24, NodMAISI augmentation improved AUC by 0.07 to 0.11 at <=20% clinical data and by 0.12 to 0.21 at 10%, consistently narrowing the performance gap under data scarcity.
Camera-based temporal 3D object detection has shown impressive results in autonomous driving, with offline models improving accuracy by using future frames. Knowledge distillation (KD) can be an appealing framework for transferring rich information from offline models to online models. However, existing KD methods overlook future frames, as they mainly focus on spatial feature distillation under strict frame alignment or on temporal relational distillation, thereby making it challenging for online models to effectively learn future knowledge. To this end, we propose a sparse query-based approach, Future Temporal Knowledge Distillation (FTKD), which effectively transfers future frame knowledge from an offline teacher model to an online student model. Specifically, we present a future-aware feature reconstruction strategy to encourage the student model to capture future features without strict frame alignment. In addition, we further introduce future-guided logit distillation to leverage the teacher's stable foreground and background context. FTKD is applied to two high-performing 3D object detection baselines, achieving up to 1.3 mAP and 1.3 NDS gains on the nuScenes dataset, as well as the most accurate velocity estimation, without increasing inference cost.
Convolutional Neural Networks (CNNs) for computer vision sometimes struggle with understanding images in a global context, as they mainly focus on local patterns. On the other hand, Vision Transformers (ViTs), inspired by models originally created for language processing, use self-attention mechanisms, which allow them to understand relationships across the entire image. In this paper, we compare different types of ViTs (pure, hierarchical, and hybrid) against traditional CNN models across various tasks, including object recognition, detection, and medical image classification. We conduct thorough tests on standard datasets like ImageNet for image classification and COCO for object detection. Additionally, we apply these models to medical imaging using the ChestX-ray14 dataset. We find that hybrid and hierarchical transformers, especially Swin and CvT, offer a strong balance between accuracy and computational resources. Furthermore, by experimenting with data augmentation techniques on medical images, we discover significant performance improvements, particularly with the Swin Transformer model. Overall, our results indicate that Vision Transformers are competitive and, in many cases, outperform traditional CNNs, especially in scenarios requiring the understanding of global visual contexts like medical imaging.
Human beings solve complex problems through critical thinking, where reasoning and evaluation are intertwined to converge toward correct solutions. However, most existing large language models (LLMs) decouple reasoning from verification: they either generate reasoning without explicit self-checking or rely on external verifiers to detect errors post hoc. The former lacks immediate feedback, while the latter increases system complexity and hinders synchronized learning. Motivated by human critical thinking, we propose Stepwise Think-Critique (STC), a unified framework that interleaves reasoning and self-critique at each step within a single model. STC is trained with a hybrid reinforcement learning objective combining reasoning rewards and critique-consistency rewards to jointly optimize reasoning quality and self-evaluation. Experiments on mathematical reasoning benchmarks show that STC demonstrates strong critic-thinking capabilities and produces more interpretable reasoning traces, representing a step toward LLMs with built-in critical thinking.
Large language models (LLMs) with explicit reasoning capabilities excel at mathematical reasoning yet still commit process errors, such as incorrect calculations, brittle logic, and superficially plausible but invalid steps. In this paper, we introduce Generative Adversarial Reasoner, an on-policy joint training framework designed to enhance reasoning by co-evolving an LLM reasoner and an LLM-based discriminator through adversarial reinforcement learning. A compute-efficient review schedule partitions each reasoning chain into logically complete slices of comparable length, and the discriminator evaluates each slice's soundness with concise, structured justifications. Learning couples complementary signals: the LLM reasoner is rewarded for logically consistent steps that yield correct answers, while the discriminator earns rewards for correctly detecting errors or distinguishing traces in the reasoning process. This produces dense, well-calibrated, on-policy step-level rewards that supplement sparse exact-match signals, improving credit assignment, increasing sample efficiency, and enhancing overall reasoning quality of LLMs. Across various mathematical benchmarks, the method delivers consistent gains over strong baselines with standard RL post-training. Specifically, on AIME24, we improve DeepSeek-R1-Distill-Qwen-7B from 54.0 to 61.3 (+7.3) and DeepSeek-R1-Distill-Llama-8B from 43.7 to 53.7 (+10.0). The modular discriminator also enables flexible reward shaping for objectives such as teacher distillation, preference alignment, and mathematical proof-based reasoning.
Recent advances in video generation have produced vivid content that are often indistinguishable from real videos, making AI-generated video detection an emerging societal challenge. Prior AIGC detection benchmarks mostly evaluate video without audio, target broad narrative domains, and focus on classification solely. Yet it remains unclear whether state-of-the-art video generation models can produce immersive, audio-paired videos that reliably deceive humans and VLMs. To this end, we introduce Video Reality Test, an ASMR-sourced video benchmark suite for testing perceptual realism under tight audio-visual coupling, featuring the following dimensions: (i) Immersive ASMR video-audio sources. Built on carefully curated real ASMR videos, the benchmark targets fine-grained action-object interactions with diversity across objects, actions, and backgrounds. (ii) Peer-Review evaluation. An adversarial creator-reviewer protocol where video generation models act as creators aiming to fool reviewers, while VLMs serve as reviewers seeking to identify fakeness. Our experimental findings show: The best creator Veo3.1-Fast even fools most VLMs: the strongest reviewer (Gemini 2.5-Pro) achieves only 56% accuracy (random 50%), far below that of human experts (81.25%). Adding audio improves real-fake discrimination, yet superficial cues such as watermarks can still significantly mislead models. These findings delineate the current boundary of video generation realism and expose limitations of VLMs in perceptual fidelity and audio-visual consistency. Our code is available at https://github.com/video-reality-test/video-reality-test.
Accurate and interpretable classification of infant cry paralinguistics is essential for early detection of neonatal distress and clinical decision support. However, many existing deep learning methods rely on correlation-driven acoustic representations, which makes them vulnerable to noise, spurious cues, and domain shifts across recording environments. We propose DACH-TIC, a Domain-Agnostic Causal-Aware Hierarchical Audio Transformer for robust infant cry classification. The model integrates causal attention, hierarchical representation learning, multi-task supervision, and adversarial domain generalization within a unified framework. DACH-TIC employs a structured transformer backbone with local token-level and global semantic encoders, augmented by causal attention masking and controlled perturbation training to approximate counterfactual acoustic variations. A domain-adversarial objective promotes environment-invariant representations, while multi-task learning jointly optimizes cry type recognition, distress intensity estimation, and causal relevance prediction. The model is evaluated on the Baby Chillanto and Donate-a-Cry datasets, with ESC-50 environmental noise overlays for domain augmentation. Experimental results show that DACH-TIC outperforms state-of-the-art baselines, including HTS-AT and SE-ResNet Transformer, achieving improvements of 2.6 percent in accuracy and 2.2 points in macro-F1 score, alongside enhanced causal fidelity. The model generalizes effectively to unseen acoustic environments, with a domain performance gap of only 2.4 percent, demonstrating its suitability for real-world neonatal acoustic monitoring systems.
Weakly supervised oriented object detection (WS-OOD) has gained attention as a cost-effective alternative to fully supervised methods, providing both efficiency and high accuracy. Among weakly supervised approaches, horizontal bounding box (HBox)-supervised OOD stands out for its ability to directly leverage existing HBox annotations while achieving the highest accuracy under weak supervision settings. This paper introduces adaptive bounding box scaling and symmetry-prior-based orientation prediction, called ABBSPO, a framework for WS-OOD. Our ABBSPO addresses limitations of previous HBox-supervised OOD methods, which compare ground truth (GT) HBoxes directly with the minimum circumscribed rectangles of predicted RBoxes, often leading to inaccurate scale estimation. To overcome this, we propose: (i) Adaptive Bounding Box Scaling (ABBS), which appropriately scales GT HBoxes to optimize for the size of each predicted RBox, ensuring more accurate scale prediction; and (ii) a Symmetric Prior Angle (SPA) loss that exploits inherent symmetry of aerial objects for self-supervised learning, resolving issues in previous methods where learning collapses when predictions for all three augmented views (original, rotated, and flipped) are consistently incorrect. Extensive experimental results demonstrate that ABBSPO achieves state-of-the-art performance, outperforming existing methods.
This paper investigates and develops methods for detecting small objects in large-scale aerial images. Current approaches for detecting small objects in aerial images often involve image cropping and modifications to detector network architectures. Techniques such as sliding window cropping and architectural enhancements, including higher-resolution feature maps and attention mechanisms, are commonly employed. Given the growing importance of aerial imagery in various critical and industrial applications, the need for robust frameworks for small object detection becomes imperative. To address this need, we adopted the base SW-YOLO approach to enhance speed and accuracy in small object detection by refining cropping dimensions and overlap in sliding window usage and subsequently enhanced it through architectural modifications. we propose a novel model by modifying the base model architecture, including advanced feature extraction modules in the neck for feature map enhancement, integrating CBAM in the backbone to preserve spatial and channel information, and introducing a new head to boost small object detection accuracy. Finally, we compared our method with SAHI, one of the most powerful frameworks for processing large-scale images, and CZDet, which is also based on image cropping, achieving significant improvements in accuracy. The proposed model achieves significant accuracy gains on the VisDrone2019 dataset, outperforming baseline YOLOv5L detection by a substantial margin. Specifically, the final proposed model elevates the mAP .5.5 accuracy on the VisDrone2019 dataset from the base accuracy of 35.5 achieved by the YOLOv5L detector to 61.2. Notably, the accuracy of CZDet, which is another classic method applied to this dataset, is 58.36. This research demonstrates a significant improvement, achieving an increase in accuracy from 35.5 to 61.2.