Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
We consider the problem of vision-based pose estimation for autonomous systems. While deep neural networks have been successfully used for vision-based tasks, they inherently lack provable guarantees on the correctness of their output, which is crucial for safety-critical applications. We present a framework for designing certifiable neural networks (NNs) for perception-based pose estimation that integrates physics-driven modeling with learning-based estimation. The proposed framework begins by leveraging the known geometry of planar objects commonly found in the environment, such as traffic signs and runway markings, referred to as target objects. At its core, it introduces a geometric generative model (GGM), a neural-network-like model whose parameters are derived from the image formation process of a target object observed by a camera. Once designed, the GGM can be used to train NN-based pose estimators with certified guarantees in terms of their estimation errors. We first demonstrate this framework in uncluttered environments, where the target object is the only object present in the camera's field of view. We extend this using ideas from NN reachability analysis to design certified object NN that can detect the presence of the target object in cluttered environments. Subsequently, the framework consolidates the certified object detector with the certified pose estimator to design a multi-stage perception pipeline that generalizes the proposed approach to cluttered environments, while maintaining its certified guarantees. We evaluate the proposed framework using both synthetic and real images of various planar objects commonly encountered by autonomous vehicles. Using images captured by an event-based camera, we show that the trained encoder can effectively estimate the pose of a traffic sign in accordance with the certified bound provided by the framework.
Learning in data-scarce settings has recently gained significant attention in the research community. Semi-supervised object detection(SSOD) aims to improve detection performance by leveraging a large number of unlabeled images alongside a limited number of labeled images(a.k.a.,few-shot learning). In this paper, we present a comprehensive comparison of three state-of-the-art SSOD approaches, including MixPL, Semi-DETR and Consistent-Teacher, with the goal of understanding how performance varies with the number of labeled images. We conduct experiments using the MS-COCO and Pascal VOC datasets, two popular object detection benchmarks which allow for standardized evaluation. In addition, we evaluate the SSOD approaches on a custom Beetle dataset which enables us to gain insights into their performance on specialized datasets with a smaller number of object categories. Our findings highlight the trade-offs between accuracy, model size, and latency, providing insights into which methods are best suited for low-data regimes.
Detecting anatomical landmarks in medical imaging is essential for diagnosis and intervention guidance. However, object detection models rely on costly bounding box annotations, limiting scalability. Weakly Semi-Supervised Object Detection (WSSOD) with point annotations proposes annotating each instance with a single point, minimizing annotation time while preserving localization signals. A Point-to-Box teacher model, trained on a small box-labeled subset, converts these point annotations into pseudo-box labels to train a student detector. Yet, medical imagery presents unique challenges, including overlapping anatomy, variable object sizes, and elusive structures, which hinder accurate bounding box inference. To overcome these challenges, we introduce DExTeR (DETR with Experts), a transformer-based Point-to-Box regressor tailored for medical imaging. Built upon Point-DETR, DExTeR encodes single-point annotations as object queries, refining feature extraction with the proposed class-guided deformable attention, which guides attention sampling using point coordinates and class labels to capture class-specific characteristics. To improve discrimination in complex structures, it introduces CLICK-MoE (CLass, Instance, and Common Knowledge Mixture of Experts), decoupling class and instance representations to reduce confusion among adjacent or overlapping instances. Finally, we implement a multi-point training strategy which promotes prediction consistency across different point placements, improving robustness to annotation variability. DExTeR achieves state-of-the-art performance across three datasets spanning different medical domains (endoscopy, chest X-rays, and endoscopic ultrasound) highlighting its potential to reduce annotation costs while maintaining high detection accuracy.
The rectangular tokens common to vision transformer methods for visual recognition can strongly affect performance of these methods due to incorporation of information outside the objects to be recognized. This paper introduces PaW-ViT, Patch-based Warping Vision Transformer, a preprocessing approach rooted in anatomical knowledge that normalizes ear images to enhance the efficacy of ViT. By accurately aligning token boundaries to detected ear feature boundaries, PaW-ViT obtains greater robustness to shape, size, and pose variation. By aligning feature boundaries to natural ear curvature, it produces more consistent token representations for various morphologies. Experiments confirm the effectiveness of PaW-ViT on various ViT models (ViT-T, ViT-S, ViT-B, ViT-L) and yield reasonable alignment robustness to variation in shape, size, and pose. Our work aims to solve the disconnect between ear biometric morphological variation and transformer architecture positional sensitivity, presenting a possible avenue for authentication schemes.
In this paper, we present a Transformer-based architecture for 3D radar object detection that uses a novel Transformer Decoder as the prediction head to directly regress 3D bounding boxes and class scores from radar feature representations. To bridge multi-scale radar features and the decoder, we propose Pyramid Token Fusion (PTF), a lightweight module that converts a feature pyramid into a unified, scale-aware token sequence. By formulating detection as a set prediction problem with learnable object queries and positional encodings, our design models long-range spatial-temporal correlations and cross-feature interactions. This approach eliminates dense proposal generation and heuristic post-processing such as extensive non-maximum suppression (NMS) tuning. We evaluate the proposed framework on the RADDet, where it achieves significant improvements over state-of-the-art radar-only baselines.
Multimodal sarcasm detection (MSD) aims to identify sarcasm within image-text pairs by modeling semantic incongruities across modalities. Existing methods often exploit cross-modal embedding misalignment to detect inconsistency but struggle when visual and textual content are loosely related or semantically indirect. While recent approaches leverage large language models (LLMs) to generate sarcastic cues, the inherent diversity and subjectivity of these generations often introduce noise. To address these limitations, we propose the Generative Discrepancy Comparison Network (GDCNet). This framework captures cross-modal conflicts by utilizing descriptive, factually grounded image captions generated by Multimodal LLMs (MLLMs) as stable semantic anchors. Specifically, GDCNet computes semantic and sentiment discrepancies between the generated objective description and the original text, alongside measuring visual-textual fidelity. These discrepancy features are then fused with visual and textual representations via a gated module to adaptively balance modality contributions. Extensive experiments on MSD benchmarks demonstrate GDCNet's superior accuracy and robustness, establishing a new state-of-the-art on the MMSD2.0 benchmark.
Training deep computer vision models requires manual oversight or hyperparameter tuning of the learning rate (LR) schedule. While existing adaptive optimizers schedule the LR automatically, they suffer from computational and memory overhead, incompatibility with regularization, and suboptimal LR choices. In this work, we introduce the ZENITH (Zero-overhead Evolution using Norm-Informed Training History) optimizer, which adapts the LR using the temporal evolution of the gradient norm. Image classification experiments spanning 6 CNN architectures and 6 benchmarks demonstrate that ZENITH achieves higher test accuracy in lower wall-clock time than baselines. It also yielded superior mAP in object detection, keypoint detection, and instance segmentation on MS COCO using the R-CNN family of models. Furthermore, its compatibility with regularization enables even better generalization.
Despite tremendous improvements in tasks such as image classification, object detection, and segmentation, the recognition of visual relationships, commonly modeled as the extraction of a graph from an image, remains a challenging task. We believe that this mainly stems from the fact that there is no canonical way to approach the visual graph recognition task. Most existing solutions are specific to a problem and cannot be transferred between different contexts out-of-the box, even though the conceptual problem remains the same. With broad applicability and simplicity in mind, in this paper we develop a method, \textbf{Gra}ph Recognition via \textbf{S}ubgraph \textbf{P}rediction (\textbf{GraSP}), for recognizing graphs in images. We show across several synthetic benchmarks and one real-world application that our method works with a set of diverse types of graphs and their drawings, and can be transferred between tasks without task-specific modifications, paving the way to a more unified framework for visual graph recognition.
Object detection in sonar images is a key technology in underwater detection systems. Compared to natural images, sonar images contain fewer texture details and are more susceptible to noise, making it difficult for non-experts to distinguish subtle differences between classes. This leads to their inability to provide precise annotation data for sonar images. Therefore, designing effective object detection methods for sonar images with extremely limited labels is particularly important. To address this, we propose a teacher-student framework called RSOD, which aims to fully learn the characteristics of sonar images and develop a pseudo-label strategy suitable for these images to mitigate the impact of limited labels. First, RSOD calculates a reliability score by assessing the consistency of the teacher's predictions across different views. To leverage this score, we introduce an object mixed pseudo-label method to tackle the shortage of labeled data in sonar images. Finally, we optimize the performance of the student by implementing a reliability-guided adaptive constraint. By taking full advantage of unlabeled data, the student can perform well even in situations with extremely limited labels. Notably, on the UATD dataset, our method, using only 5% of labeled data, achieves results that can compete against those of our baseline algorithm trained on 100% labeled data. We also collected a new dataset to provide more valuable data for research in the field of sonar.
Source-Free Object Detection (SFOD) has garnered much attention in recent years by eliminating the need of source-domain data in cross-domain tasks, but existing SFOD methods suffer from the Source Bias problem, i.e. the adapted model remains skewed towards the source domain, leading to poor generalization and error accumulation during self-training. To overcome this challenge, we propose Debiased Source-free Object Detection (DSOD), a novel VFM-assisted SFOD framework that can effectively mitigate source bias with the help of powerful VFMs. Specifically, we propose Unified Feature Injection (UFI) module that integrates VFM features into the CNN backbone through Simple-Scale Extension (SSE) and Domain-aware Adaptive Weighting (DAAW). Then, we propose Semantic-aware Feature Regularization (SAFR) that constrains feature learning to prevent overfitting to source domain characteristics. Furthermore, we propose a VFM-free variant, termed DSOD-distill for computation-restricted scenarios through a novel Dual-Teacher distillation scheme. Extensive experiments on multiple benchmarks demonstrate that DSOD outperforms state-of-the-art SFOD methods, achieving 48.1% AP on Normal-to-Foggy weather adaptation, 39.3% AP on Cross-scene adaptation, and 61.4% AP on Synthetic-to-Real adaptation.