Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
6D object pose estimation plays a crucial role in scene understanding for applications such as robotics and augmented reality. To support the needs of ever-changing object sets in such context, modern zero-shot object pose estimators were developed to not require object-specific training but only rely on CAD models. Such models are hard to obtain once deployed, and a continuously changing and growing set of objects makes it harder to reliably identify the instance model of interest. To address this challenge, we introduce an Open-Set CAD Retrieval from a Language Prompt and a Single Image (OSCAR), a novel training-free method that retrieves a matching object model from an unlabeled 3D object database. During onboarding, OSCAR generates multi-view renderings of database models and annotates them with descriptive captions using an image captioning model. At inference, GroundedSAM detects the queried object in the input image, and multi-modal embeddings are computed for both the Region-of-Interest and the database captions. OSCAR employs a two-stage retrieval: text-based filtering using CLIP identifies candidate models, followed by image-based refinement using DINOv2 to select the most visually similar object. In our experiments we demonstrate that OSCAR outperforms all state-of-the-art methods on the cross-domain 3D model retrieval benchmark MI3DOR. Furthermore, we demonstrate OSCAR's direct applicability in automating object model sourcing for 6D object pose estimation. We propose using the most similar object model for pose estimation if the exact instance is not available and show that OSCAR achieves an average precision of 90.48\% during object retrieval on the YCB-V object dataset. Moreover, we demonstrate that the most similar object model can be utilized for pose estimation using Megapose achieving better results than a reconstruction-based approach.
RGB-based camouflaged object detection struggles in real-world scenarios where color and texture cues are ambiguous. While hyperspectral image offers a powerful alternative by capturing fine-grained spectral signatures, progress in hyperspectral camouflaged object detection (HCOD) has been critically hampered by the absence of a dedicated, large-scale benchmark. To spur innovation, we introduce HyperCOD, the first challenging benchmark for HCOD. Comprising 350 high-resolution hyperspectral images, It features complex real-world scenarios with minimal objects, intricate shapes, severe occlusions, and dynamic lighting to challenge current models. The advent of foundation models like the Segment Anything Model (SAM) presents a compelling opportunity. To adapt the Segment Anything Model (SAM) for HCOD, we propose HyperSpectral Camouflage-aware SAM (HSC-SAM). HSC-SAM ingeniously reformulates the hyperspectral image by decoupling it into a spatial map fed to SAM's image encoder and a spectral saliency map that serves as an adaptive prompt. This translation effectively bridges the modality gap. Extensive experiments show that HSC-SAM sets a new state-of-the-art on HyperCOD and generalizes robustly to other public HSI datasets. The HyperCOD dataset and our HSC-SAM baseline provide a robust foundation to foster future research in this emerging area.
Segment Anything 3 (SAM3) has established a powerful foundation that robustly detects, segments, and tracks specified targets in videos. However, in its original implementation, its group-level collective memory selection is suboptimal for complex multi-object scenarios, as it employs a synchronized decision across all concurrent targets conditioned on their average performance, often overlooking individual reliability. To this end, we propose SAM3-DMS, a training-free decoupled strategy that utilizes fine-grained memory selection on individual objects. Experiments demonstrate that our approach achieves robust identity preservation and tracking stability. Notably, our advantage becomes more pronounced with increased target density, establishing a solid foundation for simultaneous multi-target video segmentation in the wild.
Surface defects on Printed Circuit Boards (PCBs) directly compromise product reliability and safety. However, achieving high-precision detection is challenging because PCB defects are typically characterized by tiny sizes, high texture similarity, and uneven scale distributions. To address these challenges, this paper proposes a novel framework based on YOLOv11n, named SME-YOLO (Small-target Multi-scale Enhanced YOLO). First, we employ the Normalized Wasserstein Distance Loss (NWDLoss). This metric effectively mitigates the sensitivity of Intersection over Union (IoU) to positional deviations in tiny objects. Second, the original upsampling module is replaced by the Efficient Upsampling Convolution Block (EUCB). By utilizing multi-scale convolutions, the EUCB gradually recovers spatial resolution and enhances the preservation of edge and texture details for tiny defects. Finally, this paper proposes the Multi-Scale Focused Attention (MSFA) module. Tailored to the specific spatial distribution of PCB defects, this module adaptively strengthens perception within key scale intervals, achieving efficient fusion of local fine-grained features and global context information. Experimental results on the PKU-PCB dataset demonstrate that SME-YOLO achieves state-of-the-art performance. Specifically, compared to the baseline YOLOv11n, SME-YOLO improves mAP by 2.2% and Precision by 4%, validating the effectiveness of the proposed method.
The advantage of RGB-Thermal (RGB-T) detection lies in its ability to perform modality fusion and integrate cross-modality complementary information, enabling robust detection under diverse illumination and weather conditions. However, under extreme conditions where one modality exhibits poor quality and disturbs detection, modality separation is necessary to mitigate the impact of noise. To address this problem, we propose a Modality-Decoupled RGB-T detection framework with Query Fusion (MDQF) to balance modality complementation and separation. In this framework, DETR-like detectors are employed as separate branches for the RGB and TIR images, with query fusion interspersed between the two branches in each refinement stage. Herein, query fusion is performed by feeding the high-quality queries from one branch to the other one after query selection and adaptation. This design effectively excludes the degraded modality and corrects the predictions using high-quality queries. Moreover, the decoupled framework allows us to optimize each individual branch with unpaired RGB or TIR images, eliminating the need for paired RGB-T data. Extensive experiments demonstrate that our approach delivers superior performance to existing RGB-T detectors and achieves better modality independence.
Autonomous Vehicle (AV) technology has been heavily researched and sought after, yet there are no SAE Level 5 AVs available today in the marketplace. We contend that over-reliance on machine learning technology is the main reason. Use of automated commonsense reasoning technology, we believe, can help achieve SAE Level 5 autonomy. In this paper, we show how automated common- sense reasoning technology can be deployed in situations where there are not enough data samples available to train a deep learning-based AV model that can handle certain abnormal road scenarios. Specifically, we consider two situations where (i) a traffic signal is malfunctioning at an intersection and (ii) all the cars ahead are slowing down and steering away due to an unexpected obstruction (e.g., animals on the road). We show that in such situations, our commonsense reasoning-based solution accurately detects traffic light colors and obstacles not correctly captured by the AV's perception model. We also provide a pathway for efficiently invoking commonsense reasoning by measuring uncertainty in the computer vision model and using commonsense reasoning to handle uncertain sce- narios. We describe our experiments conducted using the CARLA simulator and the results obtained. The main contribution of our research is to show that automated commonsense reasoning effectively corrects AV-based object detection misclassifications and that hybrid models provide an effective pathway to improving AV perception.
Most Multimodal Sentiment Analysis research has focused on point-wise regression. While straightforward, this approach is sensitive to label noise and neglects whether one sample is more positive than another, resulting in unstable predictions and poor correlation alignment. Pairwise ordinal learning frameworks emerged to address this gap, capturing relative order by learning from comparisons. Yet, they introduce two new trade-offs: First, they assign uniform importance to all comparisons, failing to adaptively focus on hard-to-rank samples. Second, they employ static ranking margins, which fail to reflect the varying semantic distances between sentiment groups. To address this, we propose a Two-Stage Group-wise Ranking and Calibration Framework (GRCF) that adapts the philosophy of Group Relative Policy Optimization (GRPO). Our framework resolves these trade-offs by simultaneously preserving relative ordinal structure, ensuring absolute score calibration, and adaptively focusing on difficult samples. Specifically, Stage 1 introduces a GRPO-inspired Advantage-Weighted Dynamic Margin Ranking Loss to build a fine-grained ordinal structure. Stage 2 then employs an MAE-driven objective to align prediction magnitudes. To validate its generalizability, we extend GRCF to classification tasks, including multimodal humor detection and sarcasm detection. GRCF achieves state-of-the-art performance on core regression benchmarks, while also showing strong generalizability in classification tasks.
Paleography is the study of ancient and historical handwriting, its key objectives include the dating of manuscripts and understanding the evolution of writing. Estimating when a document was written and tracing the development of scripts and writing styles can be aided by identifying the individual scribes who contributed to a medieval manuscript. Although digital technologies have made significant progress in this field, the general problem remains unsolved and continues to pose open challenges. ... We previously proposed an approach focused on identifying specific letters or abbreviations that characterize each writer. In that study, we considered the letter "a", as it was widely present on all pages of text and highly distinctive, according to the suggestions of expert paleographers. We used template matching techniques to detect the occurrences of the character "a" on each page and the convolutional neural network (CNN) to attribute each instance to the correct scribe. Moving from the interesting results achieved from this previous system and being aware of the limitations of the template matching technique, which requires an appropriate threshold to work, we decided to experiment in the same framework with the use of the YOLO object detection model to identify the scribe who contributed to the writing of different medieval books. We considered the fifth version of YOLO to implement the YOLO object detection model, which completely substituted the template matching and CNN used in the previous work. The experimental results demonstrate that YOLO effectively extracts a greater number of letters considered, leading to a more accurate second-stage classification. Furthermore, the YOLO confidence score provides a foundation for developing a system that applies a rejection threshold, enabling reliable writer identification even in unseen manuscripts.
Detecting tiny objects plays a vital role in remote sensing intelligent interpretation, as these objects often carry critical information for downstream applications. However, due to the extremely limited pixel information and significant variations in object density, mainstream Transformer-based detectors often suffer from slow convergence and inaccurate query-object matching. To address these challenges, we propose D$^3$R-DETR, a novel DETR-based detector with Dual-Domain Density Refinement. By fusing spatial and frequency domain information, our method refines low-level feature maps and utilizes their rich details to predict more accurate object density map, thereby guiding the model to precisely localize tiny objects. Extensive experiments on the AI-TOD-v2 dataset demonstrate that D$^3$R-DETR outperforms existing state-of-the-art detectors for tiny object detection.
To fully exploit depth cues in Camouflaged Object Detection (COD), we present DGA-Net, a specialized framework that adapts the Segment Anything Model (SAM) via a novel ``depth prompting" paradigm. Distinguished from existing approaches that primarily rely on sparse prompts (e.g., points or boxes), our method introduces a holistic mechanism for constructing and propagating dense depth prompts. Specifically, we propose a Cross-modal Graph Enhancement (CGE) module that synthesizes RGB semantics and depth geometric within a heterogeneous graph to form a unified guidance signal. Furthermore, we design an Anchor-Guided Refinement (AGR) module. To counteract the inherent information decay in feature hierarchies, AGR forges a global anchor and establishes direct non-local pathways to broadcast this guidance from deep to shallow layers, ensuring precise and consistent segmentation. Quantitative and qualitative experimental results demonstrate that our proposed DGA-Net outperforms the state-of-the-art COD methods.