CYENS Centre of Excellence, Nicosia, Cyprus, Open University Cyprus, Nicosia, Cyprus
Abstract:Neural-Symbolic (NeSy) Artificial Intelligence has emerged as a promising approach for combining the learning capabilities of neural networks with the interpretable reasoning of symbolic systems. However, existing NeSy frameworks typically require either predefined symbolic policies or policies that are differentiable, limiting their applicability when domain expertise is unavailable or when policies are inherently non-differentiable. We propose a framework that addresses this limitation by enabling the concurrent learning of both non-differentiable symbolic policies and neural network weights through an evolutionary process. Our approach casts NeSy systems as organisms in a population that evolve through mutations (both symbolic rule additions and neural weight changes), with fitness-based selection guiding convergence toward hidden target policies. The framework extends the NEUROLOG architecture to make symbolic policies trainable, adapts Valiant's Evolvability framework to the NeSy context, and employs Machine Coaching semantics for mutable symbolic representations. Neural networks are trained through abductive reasoning from the symbolic component, eliminating differentiability requirements. Through extensive experimentation, we demonstrate that NeSy systems starting with empty policies and random neural weights can successfully approximate hidden non-differentiable target policies, achieving median correct performance approaching 100%. This work represents a step toward enabling NeSy research in domains where the acquisition of symbolic knowledge from experts is challenging or infeasible.
Abstract:Walking has always been a primary mode of transportation and is recognized as an essential activity for maintaining good health. Despite the need for safe walking conditions in urban environments, sidewalks are frequently obstructed by various obstacles that hinder free pedestrian movement. Any object obstructing a pedestrian's path can pose a safety hazard. The advancement of pervasive computing and egocentric vision techniques offers the potential to design systems that can automatically detect such obstacles in real time, thereby enhancing pedestrian safety. The development of effective and efficient identification algorithms relies on the availability of comprehensive and well-balanced datasets of egocentric data. In this work, we introduce the PEDESTRIAN dataset, comprising egocentric data for 29 different obstacles commonly found on urban sidewalks. A total of 340 videos were collected using mobile phone cameras, capturing a pedestrian's point of view. Additionally, we present the results of a series of experiments that involved training several state-of-the-art deep learning algorithms using the proposed dataset, which can be used as a benchmark for obstacle detection and recognition tasks. The dataset can be used for training pavement obstacle detectors to enhance the safety of pedestrians in urban areas.