Abstract:Ensuring safety is the primary objective of automated driving, which necessitates a comprehensive and accurate perception of the environment. While numerous performance evaluation metrics exist for assessing perception capabilities, incorporating safety-specific metrics is essential to reliably evaluate object detection systems. A key component for safety evaluation is the ability to distinguish between relevant and non-relevant objects - a challenge addressed by criticality or relevance metrics. This paper presents the first in-depth analysis of criticality metrics for safety evaluation of object detection systems. Through a comprehensive review of existing literature, we identify and assess a range of applicable metrics. Their effectiveness is empirically validated using the DeepAccident dataset, which features a variety of safety-critical scenarios. To enhance evaluation accuracy, we propose two novel application strategies: bidirectional criticality rating and multi-metric aggregation. Our approach demonstrates up to a 100% improvement in terms of criticality classification accuracy, highlighting its potential to significantly advance the safety evaluation of object detection systems in automated vehicles.
Abstract:Extensive evaluation of perception systems is crucial for ensuring the safety of intelligent vehicles in complex driving scenarios. Conventional performance metrics such as precision, recall and the F1-score assess the overall detection accuracy, but they do not consider the safety-relevant aspects of perception. Consequently, perception systems that achieve high scores in these metrics may still cause misdetections that could lead to severe accidents. Therefore, it is important to evaluate not only the overall performance of perception systems, but also their safety. We therefore introduce a novel safety metric for jointly evaluating the most critical perception tasks, object and lane detection. Our proposed framework integrates a new, lightweight object safety metric that quantifies the potential risk associated with object detection errors, as well as an lane safety metric including the interdependence between both tasks that can occur in safety evaluation. The resulting combined safety score provides a unified, interpretable measure of perception safety performance. Using the DeepAccident dataset, we demonstrate that our approach identifies safety critical perception errors that conventional performance metrics fail to capture. Our findings emphasize the importance of safety-centric evaluation methods for perception systems in autonomous driving.
Abstract:Complete perception of the environment and its correct interpretation is crucial for autonomous vehicles. Object perception is the main component of automotive surround sensing. Various metrics already exist for the evaluation of object perception. However, objects can be of different importance depending on their velocity, orientation, distance, size, or the potential damage that could be caused by a collision due to a missed detection. Thus, these additional parameters have to be considered for safety evaluation. We propose a new safety metric that incorporates all these parameters and returns a single easily interpretable safety assessment score for object perception. This new metric is evaluated with both real world and virtual data sets and compared to state of the art metrics.
Abstract:Comprehensive environment perception is essential for autonomous vehicles to operate safely. It is crucial to detect both dynamic road users and static objects like traffic signs or lanes as these are required for safe motion planning. However, in many circumstances a complete perception of other objects or lanes is not achievable due to limited sensor ranges, occlusions, and curves. In scenarios where an accurate localization is not possible or for roads where no HD maps are available, an autonomous vehicle must rely solely on its perceived road information. Thus, extending local sensing capabilities through collective perception using vehicle-to-vehicle communication is a promising strategy that has not yet been explored for lane detection. Therefore, we propose a real-time capable approach for collective perception of lanes using a spline-based estimation of undetected road sections. We evaluate our proposed fusion algorithm in various situations and road types. We were able to achieve real-time capability and extend the perception range by up to 200%.
Abstract:The growing number of road users has significantly increased the risk of accidents in recent years. Vulnerable Road Users (VRUs) are particularly at risk, especially in urban environments where they are often occluded by parked vehicles or buildings. Autonomous Driving (AD) and Collective Perception (CP) are promising solutions to mitigate these risks. In particular, infrastructure-assisted CP, where sensor units are mounted on infrastructure elements such as traffic lights or lamp posts, can help overcome perceptual limitations by providing enhanced points of view, which significantly reduces occlusions. To encourage decision makers to adopt this technology, comprehensive studies and datasets demonstrating safety improvements for VRUs are essential. In this paper, we propose a framework for evaluating the safety improvement by infrastructure-based CP specifically targeted at VRUs including a dataset with safety-critical EuroNCAP scenarios (CarlaNCAP) with 11k frames. Using this dataset, we conduct an in-depth simulation study and demonstrate that infrastructure-assisted CP can significantly reduce accident rates in safety-critical scenarios, achieving up to 100% accident avoidance compared to a vehicle equipped with sensors with only 33%. Code is available at https://github.com/ekut-es/carla_ncap
Abstract:Lane detection for autonomous driving in snow-covered environments remains a major challenge due to the frequent absence or occlusion of lane markings. In this paper, we present a novel, robust and realtime capable approach that bypasses the reliance on traditional lane markings by detecting roadside features,specifically vertical roadside posts called delineators, as indirect lane indicators. Our method first perceives these posts, then fits a smooth lane trajectory using a parameterized Bezier curve model, leveraging spatial consistency and road geometry. To support training and evaluation in these challenging scenarios, we introduce SnowyLane, a new synthetic dataset containing 80,000 annotated frames capture winter driving conditions, with varying snow coverage, and lighting conditions. Compared to state-of-the-art lane detection systems, our approach demonstrates significantly improved robustness in adverse weather, particularly in cases with heavy snow occlusion. This work establishes a strong foundation for reliable lane detection in winter scenarios and contributes a valuable resource for future research in all-weather autonomous driving. The dataset is available at https://ekut-es.github.io/snowy-lane
Abstract:While automated vehicles hold the potential to significantly reduce traffic accidents, their perception systems remain vulnerable to sensor degradation caused by adverse weather and environmental occlusions. Collective perception, which enables vehicles to share information, offers a promising approach to overcoming these limitations. However, to this date collective perception in adverse weather is mostly unstudied. Therefore, we conduct the first study of LiDAR-based collective perception under diverse weather conditions and present a novel multi-task architecture for LiDAR-based collective perception under adverse weather. Adverse weather conditions can not only degrade perception capabilities, but also negatively affect bandwidth requirements and latency due to the introduced noise that is also transmitted and processed. Denoising prior to communication can effectively mitigate these issues. Therefore, we propose DenoiseCP-Net, a novel multi-task architecture for LiDAR-based collective perception under adverse weather conditions. DenoiseCP-Net integrates voxel-level noise filtering and object detection into a unified sparse convolution backbone, eliminating redundant computations associated with two-stage pipelines. This design not only reduces inference latency and computational cost but also minimizes communication overhead by removing non-informative noise. We extended the well-known OPV2V dataset by simulating rain, snow, and fog using our realistic weather simulation models. We demonstrate that DenoiseCP-Net achieves near-perfect denoising accuracy in adverse weather, reduces the bandwidth requirements by up to 23.6% while maintaining the same detection accuracy and reducing the inference latency for cooperative vehicles.
Abstract:RISC-V provides a flexible and scalable platform for applications ranging from embedded devices to high-performance computing clusters. Particularly, its RISC-V Vector Extension (RVV) becomes of interest for the acceleration of AI workloads. But writing software that efficiently utilizes the vector units of RISC-V CPUs without expert knowledge requires the programmer to rely on the autovectorization features of compilers or hand-crafted libraries like muRISCV-NN. Smarter approaches, like autotuning frameworks, have been missing the integration with the RISC-V RVV extension, thus heavily limiting the efficient deployment of complex AI workloads. In this paper, we present a workflow based on the TVM compiler to efficiently map AI workloads onto RISC-V vector units. Instead of relying on hand-crafted libraries, we integrated the RVV extension into TVM's MetaSchedule framework, a probabilistic program framework for tensor operation tuning. We implemented different RISC-V SoCs on an FPGA and tuned a wide range of AI workloads on them. We found that our proposal shows a mean improvement of 46% in execution latency when compared against the autovectorization feature of GCC, and 29% against muRISCV-NN. Moreover, the binary resulting from our proposal has a smaller code memory footprint, making it more suitable for embedded devices. Finally, we also evaluated our solution on a commercially available RISC-V SoC implementing the RVV 1.0 Vector Extension and found our solution is able to find mappings that are 35% faster on average than the ones proposed by LLVM. We open-sourced our proposal for the community to expand it to target other RISC-V extensions.
Abstract:This paper presents the first application of Gaussian Mixture Copula Models to the statistical modeling of driving scenarios for the safety validation of automated driving systems. Knowledge of the joint probability distribution of scenario parameters is essential for scenario-based safety assessment, where risk quantification depends on the likelihood of concrete parameter combinations. Gaussian Mixture Copula Models bring together the multimodal expressivity of Gaussian Mixture Models and the flexibility of copulas, enabling separate modeling of marginal distributions and dependencies. We benchmark Gaussian Mixture Copula Models against previously proposed approaches - Gaussian Mixture Models and Gaussian Copula Models - using real-world driving data drawn from scenarios defined in United Nations Regulation No. 157. Our evaluation across 18 million scenario instances demonstrates that Gaussian Mixture Copula Models provide a better fit to the data in terms of both likelihood and Sinkhorn distance. These results suggest that Gaussian Mixture Copula Models are a compelling foundation for future scenario-based validation frameworks.
Abstract:Enhancing the efficiency of high-quality image generation using Diffusion Models (DMs) is a significant challenge due to the iterative nature of the process. Flow Matching (FM) is emerging as a powerful generative modeling paradigm based on a simulation-free training objective instead of a score-based one used in DMs. Typical FM approaches rely on a Gaussian distribution prior, which induces curved, conditional probability paths between the prior and target data distribution. These curved paths pose a challenge for the Ordinary Differential Equation (ODE) solver, requiring a large number of inference calls to the flow prediction network. To address this issue, we present Learned Distribution-guided Flow Matching (LeDiFlow), a novel scalable method for training FM-based image generation models using a better-suited prior distribution learned via a regression-based auxiliary model. By initializing the ODE solver with a prior closer to the target data distribution, LeDiFlow enables the learning of more computationally tractable probability paths. These paths directly translate to fewer solver steps needed for high-quality image generation at inference time. Our method utilizes a State-Of-The-Art (SOTA) transformer architecture combined with latent space sampling and can be trained on a consumer workstation. We empirically demonstrate that LeDiFlow remarkably outperforms the respective FM baselines. For instance, when operating directly on pixels, our model accelerates inference by up to 3.75x compared to the corresponding pixel-space baseline. Simultaneously, our latent FM model enhances image quality on average by 1.32x in CLIP Maximum Mean Discrepancy (CMMD) metric against its respective baseline.