CYENS Centre of Excellence, Nicosia, Cyprus, Department of Multimedia and Graphic Arts, Cyprus University of Technology, Limassol, Cyprus
Abstract:Walking has always been a primary mode of transportation and is recognized as an essential activity for maintaining good health. Despite the need for safe walking conditions in urban environments, sidewalks are frequently obstructed by various obstacles that hinder free pedestrian movement. Any object obstructing a pedestrian's path can pose a safety hazard. The advancement of pervasive computing and egocentric vision techniques offers the potential to design systems that can automatically detect such obstacles in real time, thereby enhancing pedestrian safety. The development of effective and efficient identification algorithms relies on the availability of comprehensive and well-balanced datasets of egocentric data. In this work, we introduce the PEDESTRIAN dataset, comprising egocentric data for 29 different obstacles commonly found on urban sidewalks. A total of 340 videos were collected using mobile phone cameras, capturing a pedestrian's point of view. Additionally, we present the results of a series of experiments that involved training several state-of-the-art deep learning algorithms using the proposed dataset, which can be used as a benchmark for obstacle detection and recognition tasks. The dataset can be used for training pavement obstacle detectors to enhance the safety of pedestrians in urban areas.
Abstract:Monitoring species distribution is vital for conservation efforts, enabling the assessment of environmental impacts and the development of effective preservation strategies. Traditional data collection methods, including citizen science, offer valuable insights but remain limited in coverage and completeness. Species Distribution Modelling (SDM) helps address these gaps by using occurrence data and environmental variables to predict species presence across large regions. In this study, we enhance SDM accuracy for frogs (Anura) by applying deep learning and data imputation techniques using data from the "EY - 2022 Biodiversity Challenge." Our experiments show that data balancing significantly improved model performance, reducing the Mean Absolute Error (MAE) from 189 to 29 in frog counting tasks. Feature selection identified key environmental factors influencing occurrence, optimizing inputs while maintaining predictive accuracy. The multimodal ensemble model, integrating land cover, NDVI, and other environmental inputs, outperformed individual models and showed robust generalization across unseen regions. The fusion of image and tabular data improved both frog counting and habitat classification, achieving 84.9% accuracy with an AUC of 0.90. This study highlights the potential of multimodal learning and data preprocessing techniques such as balancing and imputation to improve predictive ecological modeling when data are sparse or incomplete, contributing to more precise and scalable biodiversity monitoring.
Abstract:The aim of the work presented in this paper is to develop and evaluate an integrated system that provides automated lecture style evaluation, allowing teachers to get instant feedback related to the goodness of their lecturing style. The proposed system aims to promote improvement of lecture quality, that could upgrade the overall student learning experience. The proposed application utilizes specific measurable biometric characteristics, such as facial expressions, body activity, speech rate and intonation, hand movement, and facial pose, extracted from a video showing the lecturer from the audience point of view. Measurable biometric features extracted during a lecture are combined to provide teachers with a score reflecting lecture style quality both at frame rate and by providing lecture quality metrics for the whole lecture. The acceptance of the proposed lecture style evaluation system was evaluated by chief education officers, teachers and students regarding the functionality, usefulness of the application, and possible improvements. The results indicate that participants found the application novel and useful in providing automated feedback regarding lecture quality. Furthermore, the performance evaluation of the proposed system was compared with the performance of humans in the task of lecture style evaluation. Results indicate that the proposed system not only achieves similar performance to human observers, but in some cases, it outperforms them.