Abstract:The paper presents novel Universum-enhanced classifiers: the Universum Generalized Eigenvalue Proximal Support Vector Machine (U-GEPSVM) and the Improved U-GEPSVM (IU-GEPSVM) for EEG signal classification. Using the computational efficiency of generalized eigenvalue decomposition and the generalization benefits of Universum learning, the proposed models address critical challenges in EEG analysis: non-stationarity, low signal-to-noise ratio, and limited labeled data. U-GEPSVM extends the GEPSVM framework by incorporating Universum constraints through a ratio-based objective function, while IU-GEPSVM enhances stability through a weighted difference-based formulation that provides independent control over class separation and Universum alignment. The models are evaluated on the Bonn University EEG dataset across two binary classification tasks: (O vs S)-healthy (eyes closed) vs seizure, and (Z vs S)-healthy (eyes open) vs seizure. IU-GEPSVM achieves peak accuracies of 85% (O vs S) and 80% (Z vs S), with mean accuracies of 81.29% and 77.57% respectively, outperforming baseline methods.
Abstract:This paper introduces MAVEN (Multi-modal Attention for Valence-Arousal Emotion Network), a novel architecture for dynamic emotion recognition through dimensional modeling of affect. The model uniquely integrates visual, audio, and textual modalities via a bi-directional cross-modal attention mechanism with six distinct attention pathways, enabling comprehensive interactions between all modality pairs. Our proposed approach employs modality-specific encoders to extract rich feature representations from synchronized video frames, audio segments, and transcripts. The architecture's novelty lies in its cross-modal enhancement strategy, where each modality representation is refined through weighted attention from other modalities, followed by self-attention refinement through modality-specific encoders. Rather than directly predicting valence-arousal values, MAVEN predicts emotions in a polar coordinate form, aligning with psychological models of the emotion circumplex. Experimental evaluation on the Aff-Wild2 dataset demonstrates the effectiveness of our approach, with performance measured using Concordance Correlation Coefficient (CCC). The multi-stage architecture demonstrates superior ability to capture the complex, nuanced nature of emotional expressions in conversational videos, advancing the state-of-the-art (SOTA) in continuous emotion recognition in-the-wild. Code can be found at: https://github.com/Vrushank-Ahire/MAVEN_8th_ABAW.




Abstract:This paper introduces the Granular Ball K-Class Twin Support Vector Classifier (GB-TWKSVC), a novel multi-class classification framework that combines Twin Support Vector Machines (TWSVM) with granular ball computing. The proposed method addresses key challenges in multi-class classification by utilizing granular ball representation for improved noise robustness and TWSVM's non-parallel hyperplane architecture solves two smaller quadratic programming problems, enhancing efficiency. Our approach introduces a novel formulation that effectively handles multi-class scenarios, advancing traditional binary classification methods. Experimental evaluation on diverse benchmark datasets shows that GB-TWKSVC significantly outperforms current state-of-the-art classifiers in both accuracy and computational performance. The method's effectiveness is validated through comprehensive statistical tests and complexity analysis. Our work advances classification algorithms by providing a mathematically sound framework that addresses the scalability and robustness needs of modern machine learning applications. The results demonstrate GB-TWKSVC's broad applicability across domains including pattern recognition, fault diagnosis, and large-scale data analytics, establishing it as a valuable addition to the classification algorithm landscape.