The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
The extraction and use of diverse knowledge from numerous documents is a pressing challenge in intelligent information retrieval. Documents contain elements that require different recognition methods. Table recognition typically consists of three subtasks, namely table structure, cell position and cell content recognition. Recent models have achieved excellent recognition with a combination of multi-task learning, local attention, and mutual learning. However, their effectiveness has not been fully explained, and they require a long period of time for inference. This paper presents a novel multi-task model that utilizes non-causal attention to capture the entire table structure, and a parallel inference algorithm for faster cell content inference. The superiority is demonstrated both visually and statistically on two large public datasets.




Table extraction (TE) is a key challenge in visual document understanding. Traditional approaches detect tables first, then recognize their structure. Recently, interest has surged in developing methods, such as vision-language models (VLMs), that can extract tables directly in their full page or document context. However, progress has been difficult to demonstrate due to a lack of annotated data. To address this, we create a new large-scale dataset, PubTables-v2. PubTables-v2 supports a number of current challenging table extraction tasks. Notably, it is the first large-scale benchmark for multi-page table structure recognition. We demonstrate its usefulness by evaluating domain-specialized VLMs on these tasks and highlighting current progress. Finally, we use PubTables-v2 to create the Page-Object Table Transformer (POTATR), an image-to-graph extension of the Table Transformer to comprehensive page-level TE. Data, code, and trained models will be released.
Document parsing is a core task in document intelligence, supporting applications such as information extraction, retrieval-augmented generation, and automated document analysis. However, real-world documents often feature complex layouts with multi-level tables, embedded images or formulas, and cross-page structures, which remain challenging for existing OCR systems. We introduce MonkeyOCR v1.5, a unified vision-language framework that enhances both layout understanding and content recognition through a two-stage pipeline. The first stage employs a large multimodal model to jointly predict layout and reading order, leveraging visual information to ensure sequential consistency. The second stage performs localized recognition of text, formulas, and tables within detected regions, maintaining high visual fidelity while reducing error propagation. To address complex table structures, we propose a visual consistency-based reinforcement learning scheme that evaluates recognition quality via render-and-compare alignment, improving structural accuracy without manual annotations. Additionally, two specialized modules, Image-Decoupled Table Parsing and Type-Guided Table Merging, are introduced to enable reliable parsing of tables containing embedded images and reconstruction of tables crossing pages or columns. Comprehensive experiments on OmniDocBench v1.5 demonstrate that MonkeyOCR v1.5 achieves state-of-the-art performance, outperforming PPOCR-VL and MinerU 2.5 while showing exceptional robustness in visually complex document scenarios. A trial link can be found at https://github.com/Yuliang-Liu/MonkeyOCR .
We introduce MinerU2.5, a 1.2B-parameter document parsing vision-language model that achieves state-of-the-art recognition accuracy while maintaining exceptional computational efficiency. Our approach employs a coarse-to-fine, two-stage parsing strategy that decouples global layout analysis from local content recognition. In the first stage, the model performs efficient layout analysis on downsampled images to identify structural elements, circumventing the computational overhead of processing high-resolution inputs. In the second stage, guided by the global layout, it performs targeted content recognition on native-resolution crops extracted from the original image, preserving fine-grained details in dense text, complex formulas, and tables. To support this strategy, we developed a comprehensive data engine that generates diverse, large-scale training corpora for both pretraining and fine-tuning. Ultimately, MinerU2.5 demonstrates strong document parsing ability, achieving state-of-the-art performance on multiple benchmarks, surpassing both general-purpose and domain-specific models across various recognition tasks, while maintaining significantly lower computational overhead.




This study explores three approaches to processing table data in scientific papers to enhance extractive question answering and develop a software tool for the systematic review process. The methods evaluated include: (1) Optical Character Recognition (OCR) for extracting information from documents, (2) Pre-trained models for document visual question answering, and (3) Table detection and structure recognition to extract and merge key information from tables with textual content to answer extractive questions. In exploratory experiments, we augmented ten sample test documents containing tables and relevant content against RF- EMF-related scientific papers with seven predefined extractive question-answer pairs. The results indicate that approaches preserving table structure outperform the others, particularly in representing and organizing table content. Accurately recognizing specific notations and symbols within the documents emerged as a critical factor for improved results. Our study concludes that preserving the structural integrity of tables is essential for enhancing the accuracy and reliability of extractive question answering in scientific documents.
Table structure recognition (TSR) and optical character recognition (OCR) play crucial roles in extracting structured data from tables in scientific documents. However, existing extraction frameworks built on top of TSR and OCR methods often fail to quantify the uncertainties of extracted results. To obtain highly accurate data for scientific domains, all extracted data must be manually verified, which can be time-consuming and labor-intensive. We propose a framework that performs uncertainty-aware data extraction for complex scientific tables, built on conformal prediction, a model-agnostic method for uncertainty quantification (UQ). We explored various uncertainty scoring methods to aggregate the uncertainties introduced by TSR and OCR. We rigorously evaluated the framework using a standard benchmark and an in-house dataset consisting of complex scientific tables in six scientific domains. The results demonstrate the effectiveness of using UQ for extraction error detection, and by manually verifying only 47\% of extraction results, the data quality can be improved by 30\%. Our work quantitatively demonstrates the role of UQ with the potential of improving the efficiency in the human-machine cooperation process to obtain scientifically usable data from complex tables in scientific documents. All code and data are available on GitHub at https://github.com/lamps-lab/TSR-OCR-UQ/tree/main.
To address the challenges of table structure recognition, we propose a novel Split-Merge-based top-down model optimized for large, densely populated tables. Our approach formulates row and column splitting as sequence labeling tasks, utilizing dual Transformer encoders to capture feature interactions. The merging process is framed as a grid cell classification task, leveraging an additional Transformer encoder to ensure accurate and coherent merging. By eliminating unstable bounding box predictions, our method reduces resolution loss and computational complexity, achieving high accuracy while maintaining fast processing speed. Extensive experiments on FinTabNet and PubTabNet demonstrate the superiority of our model over existing approaches, particularly in real-world applications. Our method offers a robust, scalable, and efficient solution for large-scale table recognition, making it well-suited for industrial deployment.
This paper presents the design and development of an OCR-powered pipeline for efficient table extraction from invoices. The system leverages Tesseract OCR for text recognition and custom post-processing logic to detect, align, and extract structured tabular data from scanned invoice documents. Our approach includes dynamic preprocessing, table boundary detection, and row-column mapping, optimized for noisy and non-standard invoice formats. The resulting pipeline significantly improves data extraction accuracy and consistency, supporting real-world use cases such as automated financial workflows and digital archiving.
Chemical tables encode complex experimental knowledge through symbolic expressions, structured variables, and embedded molecular graphics. Existing benchmarks largely overlook this multimodal and domain-specific complexity, limiting the ability of multimodal large language models to support scientific understanding in chemistry. In this work, we introduce ChemTable, a large-scale benchmark of real-world chemical tables curated from the experimental sections of literature. ChemTable includes expert-annotated cell polygons, logical layouts, and domain-specific labels, including reagents, catalysts, yields, and graphical components and supports two core tasks: (1) Table Recognition, covering structure parsing and content extraction; and (2) Table Understanding, encompassing both descriptive and reasoning-oriented question answering grounded in table structure and domain semantics. We evaluated a range of representative multimodal models, including both open-source and closed-source models, on ChemTable and reported a series of findings with practical and conceptual insights. Although models show reasonable performance on basic layout parsing, they exhibit substantial limitations on both descriptive and inferential QA tasks compared to human performance, and we observe significant performance gaps between open-source and closed-source models across multiple dimensions. These results underscore the challenges of chemistry-aware table understanding and position ChemTable as a rigorous and realistic benchmark for advancing scientific reasoning.