Speech Emotion Recognition (SER) is widely deployed in Human-Computer Interaction, yet the high computational cost of conventional models hinders their implementation on resource-constrained edge devices. Spiking Neural Networks (SNNs) offer an energy-efficient alternative due to their event-driven nature; however, their integration with continuous Self-Supervised Learning (SSL) representations is fundamentally challenged by distribution mismatch, where high-dynamic-range embeddings degrade the information coding capacity of threshold-based neurons. To resolve this, we propose Prompt-Tuned Spiking Neural Networks (PTS-SNN), a parameter-efficient neuromorphic adaptation framework that aligns frozen SSL backbones with spiking dynamics. Specifically, we introduce a Temporal Shift Spiking Encoder to capture local temporal dependencies via parameter-free channel shifts, establishing a stable feature basis. To bridge the domain gap, we devise a Context-Aware Membrane Potential Calibration strategy. This mechanism leverages a Spiking Sparse Linear Attention module to aggregate global semantic context into learnable soft prompts, which dynamically regulate the bias voltages of Parametric Leaky Integrate-and-Fire (PLIF) neurons. This regulation effectively centers the heterogeneous input distribution within the responsive firing range, mitigating functional silence or saturation. Extensive experiments on five multilingual datasets (e.g., IEMOCAP, CASIA, EMODB) demonstrate that PTS-SNN achieves 73.34\% accuracy on IEMOCAP, comparable to competitive Artificial Neural Networks (ANNs), while requiring only 1.19M trainable parameters and 0.35 mJ inference energy per sample.
Unsupervised speech emotion recognition (SER) focuses on addressing the problem of data sparsity and annotation bias of emotional speech. Reinforcement learning (RL) is a promising method which enhances the performance through rule-based or model-based verification functions rather than human annotations. We treat the sample selection during the learning process as a long-term procedure and whether to select a sample as the action to make policy, thus achieving the application of RL to measure sample quality in SER. We propose a modified Group Relative Policy Optimization (GRPO) to adapt it to classification problems, which takes the samples in a batch as a group and uses the average reward of these samples as the baseline to calculate the advantage. And rather than using a verifiable reward function as in GRPO, we put forward self-reward functions and teacher-reward functions to encourage the model to produce high-confidence outputs. Experiments indicate that the proposed method improves the performance of baseline without RL by 19.8%.
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
Emotion recognition in speech presents a complex multimodal challenge, requiring comprehension of both linguistic content and vocal expressivity, particularly prosodic features such as fundamental frequency, intensity, and temporal dynamics. Although large language models (LLMs) have shown promise in reasoning over textual transcriptions for emotion recognition, they typically neglect fine-grained prosodic information, limiting their effectiveness and interpretability. In this work, we propose VowelPrompt, a linguistically grounded framework that augments LLM-based emotion recognition with interpretable, fine-grained vowel-level prosodic cues. Drawing on phonetic evidence that vowels serve as primary carriers of affective prosody, VowelPrompt extracts pitch-, energy-, and duration-based descriptors from time-aligned vowel segments, and converts these features into natural language descriptions for better interpretability. Such a design enables LLMs to jointly reason over lexical semantics and fine-grained prosodic variation. Moreover, we adopt a two-stage adaptation procedure comprising supervised fine-tuning (SFT) followed by Reinforcement Learning with Verifiable Reward (RLVR), implemented via Group Relative Policy Optimization (GRPO), to enhance reasoning capability, enforce structured output adherence, and improve generalization across domains and speaker variations. Extensive evaluations across diverse benchmark datasets demonstrate that VowelPrompt consistently outperforms state-of-the-art emotion recognition methods under zero-shot, fine-tuned, cross-domain, and cross-linguistic conditions, while enabling the generation of interpretable explanations that are jointly grounded in contextual semantics and fine-grained prosodic structure.
The emergence of Large Audio-Language Models (LALMs) has advanced Speech Emotion Recognition (SER), but their size limits deployment in resource-constrained environments. While Knowledge Distillation is effective for LALM compression, existing methods remain underexplored in distilling the cross-modal projection module (Projector), and often struggle with alignment due to differences in feature dimensions. We propose PL-Distill, a KD framework that combines Projector-Level Distillation (PDist) to align audio embeddings and Logits-Level Distillation (LDist) to align output logits. PDist introduces Attention-weighted Centered Kernel Alignment, a novel approach we propose to highlight important time steps and address dimension mismatches. Meanwhile, LDist minimizes the Kullback-Leibler divergence between teacher and student logits from audio and text modalities. On IEMOCAP, RAVDESS, and SAVEE, PL-Distill compresses an 8.4B-parameter teacher to a compact 1.1B-parameter student, consistently outperforming the teacher, state-of-the-art pretrained models, and other KD baselines across all metrics.
Despite strong performance in data-rich regimes, deep learning often underperforms in the data-scarce settings common in practice. While foundation models (FMs) trained on massive datasets demonstrate strong generalization by extracting general-purpose features, they can still suffer from scarce labeled data during downstream fine-tuning. To address this, we propose GeLDA, a semantics-aware generative latent data augmentation framework that leverages conditional diffusion models to synthesize samples in an FM-induced latent space. Because this space is low-dimensional and concentrates task-relevant information compared to the input space, GeLDA enables efficient, high-quality data generation. GeLDA conditions generation on auxiliary feature vectors that capture semantic relationships among classes or subdomains, facilitating data augmentation in low-resource domains. We validate GeLDA in two large-scale recognition tasks: (a) in zero-shot language-specific speech emotion recognition, GeLDA improves the Whisper-large baseline's unweighted average recall by 6.13%; and (b) in long-tailed image classification, it achieves 74.7% tail-class accuracy on ImageNet-LT, setting a new state-of-the-art result.
We present DementiaBank-Emotion, the first multi-rater emotion annotation corpus for Alzheimer's disease (AD) speech. Annotating 1,492 utterances from 108 speakers for Ekman's six basic emotions and neutral, we find that AD patients express significantly more non-neutral emotions (16.9%) than healthy controls (5.7%; p < .001). Exploratory acoustic analysis suggests a possible dissociation: control speakers showed substantial F0 modulation for sadness (Delta = -3.45 semitones from baseline), whereas AD speakers showed minimal change (Delta = +0.11 semitones; interaction p = .023), though this finding is based on limited samples (sadness: n=5 control, n=15 AD) and requires replication. Within AD speech, loudness differentiates emotion categories, indicating partially preserved emotion-prosody mappings. We release the corpus, annotation guidelines, and calibration workshop materials to support research on emotion recognition in clinical populations.
This work presents EmoAra, an end-to-end emotion-preserving pipeline for cross-lingual spoken communication, motivated by banking customer service where emotional context affects service quality. EmoAra integrates Speech Emotion Recognition, Automatic Speech Recognition, Machine Translation, and Text-to-Speech to process English speech and deliver an Arabic spoken output while retaining emotional nuance. The system uses a CNN-based emotion classifier, Whisper for English transcription, a fine-tuned MarianMT model for English-to-Arabic translation, and MMS-TTS-Ara for Arabic speech synthesis. Experiments report an F1-score of 94% for emotion classification, translation performance of BLEU 56 and BERTScore F1 88.7%, and an average human evaluation score of 81% on banking-domain translations. The implementation and resources are available at the accompanying GitHub repository.
Emotion recognition from human speech is a critical enabler for socially aware conversational AI. However, while most prior work frames emotion recognition as a categorical classification problem, real-world affective states are often ambiguous, overlapping, and context-dependent, posing significant challenges for both annotation and automatic modeling. Recent large-scale audio language models (ALMs) offer new opportunities for nuanced affective reasoning without explicit emotion supervision, but their capacity to handle ambiguous emotions remains underexplored. At the same time, advances in inference-time techniques such as test-time scaling (TTS) have shown promise for improving generalization and adaptability in hard NLP tasks, but their relevance to affective computing is still largely unknown. In this work, we introduce the first benchmark for ambiguous emotion recognition in speech with ALMs under test-time scaling. Our evaluation systematically compares eight state-of-the-art ALMs and five TTS strategies across three prominent speech emotion datasets. We further provide an in-depth analysis of the interaction between model capacity, TTS, and affective ambiguity, offering new insights into the computational and representational challenges of ambiguous emotion understanding. Our benchmark establishes a foundation for developing more robust, context-aware, and emotionally intelligent speech-based AI systems, and highlights key future directions for bridging the gap between model assumptions and the complexity of real-world human emotion.
Speech Emotion Recognition systems often use static features like Mel-Frequency Cepstral Coefficients (MFCCs), Zero Crossing Rate (ZCR), and Root Mean Square Energy (RMSE). Because of this, they can misclassify emotions when there is acoustic noise in vocal signals. To address this, we added dynamic features using Dynamic Spectral features (Deltas and Delta-Deltas) along with the Kalman Smoothing algorithm. This approach reduces noise and improves emotion classification. Since emotion changes over time, the Kalman Smoothing filter also helped make the classifier outputs more stable. Tests on the RAVDESS dataset showed that this method achieved a state-of-the-art accuracy of 87\% and reduced misclassification between emotions with similar acoustic features