Abstract:Drug combinations play a critical role in cancer therapy by significantly enhancing treatment efficacy and overcoming drug resistance. However, the combinatorial space of possible drug pairs grows exponentially, making experimental screening highly impractical. Therefore, developing efficient computational methods to predict promising drug combinations and guide experimental validation is of paramount importance. In this work, we propose ADGSyn, an innovative method for predicting drug synergy. The key components of our approach include: (1) shared projection matrices combined with attention mechanisms to enable cross-drug feature alignment; (2) automatic mixed precision (AMP)-optimized graph operations that reduce memory consumption by 40\% while accelerating training speed threefold; and (3) residual pathways stabilized by LayerNorm to ensure stable gradient propagation during training. Evaluated on the O'Neil dataset containing 13,243 drug--cell line combinations, ADGSyn demonstrates superior performance over eight baseline methods. Moreover, the framework supports full-batch processing of up to 256 molecular graphs on a single GPU, setting a new standard for efficiency in drug synergy prediction within the field of computational oncology.
Abstract:Mild-stage dementia patients primarily experience two critical symptoms: severe memory loss and emotional instability. To address these challenges, we propose DEMENTIA-PLAN, an innovative retrieval-augmented generation framework that leverages large language models to enhance conversational support. Our model employs a multiple knowledge graph architecture, integrating various dimensional knowledge representations including daily routine graphs and life memory graphs. Through this multi-graph architecture, DEMENTIA-PLAN comprehensively addresses both immediate care needs and facilitates deeper emotional resonance through personal memories, helping stabilize patient mood while providing reliable memory support. Our notable innovation is the self-reflection planning agent, which systematically coordinates knowledge retrieval and semantic integration across multiple knowledge graphs, while scoring retrieved content from daily routine and life memory graphs to dynamically adjust their retrieval weights for optimized response generation. DEMENTIA-PLAN represents a significant advancement in the clinical application of large language models for dementia care, bridging the gap between AI tools and caregivers interventions.