Prompt injection is one of the most critical vulnerabilities in LLM agents; yet, effective automated attacks remain largely unexplored from an optimization perspective. Existing methods heavily depend on human red-teamers and hand-crafted prompts, limiting their scalability and adaptability. We propose AutoInject, a reinforcement learning framework that generates universal, transferable adversarial suffixes while jointly optimizing for attack success and utility preservation on benign tasks. Our black-box method supports both query-based optimization and transfer attacks to unseen models and tasks. Using only a 1.5B parameter adversarial suffix generator, we successfully compromise frontier systems including GPT 5 Nano, Claude Sonnet 3.5, and Gemini 2.5 Flash on the AgentDojo benchmark, establishing a stronger baseline for automated prompt injection research.
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
Multimodal large language models (MLLMs) are increasingly deployed in real-world systems, yet their safety under adversarial prompting remains underexplored. We present a two-phase evaluation of MLLM harmlessness using a fixed benchmark of 726 adversarial prompts authored by 26 professional red teamers. Phase 1 assessed GPT-4o, Claude Sonnet 3.5, Pixtral 12B, and Qwen VL Plus; Phase 2 evaluated their successors (GPT-5, Claude Sonnet 4.5, Pixtral Large, and Qwen Omni) yielding 82,256 human harm ratings. Large, persistent differences emerged across model families: Pixtral models were consistently the most vulnerable, whereas Claude models appeared safest due to high refusal rates. Attack success rates (ASR) showed clear alignment drift: GPT and Claude models exhibited increased ASR across generations, while Pixtral and Qwen showed modest decreases. Modality effects also shifted over time: text-only prompts were more effective in Phase 1, whereas Phase 2 produced model-specific patterns, with GPT-5 and Claude 4.5 showing near-equivalent vulnerability across modalities. These findings demonstrate that MLLM harmlessness is neither uniform nor stable across updates, underscoring the need for longitudinal, multimodal benchmarks to track evolving safety behaviour.
Large Language Models (LLMs) are increasingly used as evaluators of reasoning quality, yet their reliability and bias in payments-risk settings remain poorly understood. We introduce a structured multi-evaluator framework for assessing LLM reasoning in Merchant Category Code (MCC)-based merchant risk assessment, combining a five-criterion rubric with Monte-Carlo scoring to evaluate rationale quality and evaluator stability. Five frontier LLMs generate and cross-evaluate MCC risk rationales under attributed and anonymized conditions. To establish a judge-independent reference, we introduce a consensus-deviation metric that eliminates circularity by comparing each judge's score to the mean of all other judges, yielding a theoretically grounded measure of self-evaluation and cross-model deviation. Results reveal substantial heterogeneity: GPT-5.1 and Claude 4.5 Sonnet show negative self-evaluation bias (-0.33, -0.31), while Gemini-2.5 Pro and Grok 4 display positive bias (+0.77, +0.71), with bias attenuating by 25.8 percent under anonymization. Evaluation by 26 payment-industry experts shows LLM judges assign scores averaging +0.46 points above human consensus, and that the negative bias of GPT-5.1 and Claude 4.5 Sonnet reflects closer alignment with human judgment. Ground-truth validation using payment-network data shows four models exhibit statistically significant alignment (Spearman rho = 0.56 to 0.77), confirming that the framework captures genuine quality. Overall, the framework provides a replicable basis for evaluating LLM-as-a-judge systems in payment-risk workflows and highlights the need for bias-aware protocols in operational financial settings.
Large language models have recently enabled text-to-CAD systems that synthesize parametric CAD programs (e.g., CadQuery) from natural language prompts. In practice, however, geometric descriptions can be under-specified or internally inconsistent: critical dimensions may be missing and constraints may conflict. Existing fine-tuned models tend to reactively follow user instructions and hallucinate dimensions when the text is ambiguous. To address this, we propose a proactive agentic framework for text-to-CadQuery generation, named ProCAD, that resolves specification issues before code synthesis. Our framework pairs a proactive clarifying agent, which audits the prompt and asks targeted clarification questions only when necessary to produce a self-consistent specification, with a CAD coding agent that translates the specification into an executable CadQuery program. We fine-tune the coding agent on a curated high-quality text-to-CadQuery dataset and train the clarifying agent via agentic SFT on clarification trajectories. Experiments show that proactive clarification significantly improves robustness to ambiguous prompts while keeping interaction overhead low. ProCAD outperforms frontier closed-source models, including Claude Sonnet 4.5, reducing the mean Chamfer distance by 79.9 percent and lowering the invalidity ratio from 4.8 percent to 0.9 percent. Our code and datasets will be made publicly available.
As generative artificial intelligence advances, Large Language Models (LLMs) are being explored for automated graphical user interface (GUI) design. This study investigates the usability and adaptability of LLM-generated interfaces by analysing their ability to meet diverse user needs. The experiments included utilization of three state-of-the-art models from January 2025 (OpenAI GPT o3-mini-high, DeepSeek R1, and Anthropic Claude 3.5 Sonnet) generating mockups for three interface types: a chat system, a technical team panel, and a manager dashboard. Expert evaluations revealed that while LLMs are effective at creating structured layouts, they face challenges in meeting accessibility standards and providing interactive functionality. Further testing showed that LLMs could partially tailor interfaces for different user personas but lacked deeper contextual understanding. The results suggest that while LLMs are promising tools for early-stage UI prototyping, human intervention remains critical to ensure usability, accessibility, and user satisfaction.
Current agentic frameworks underperform on long-horizon tasks. As reasoning depth increases, sequential orchestration becomes brittle, context windows impose hard limits that degrade performance, and opaque execution traces make failures difficult to localize or debug. We introduce ROMA (Recursive Open Meta-Agents), a domain-agnostic framework that addresses these limitations through recursive task decomposition and structured aggregation. ROMA decomposes goals into dependency-aware subtask trees that can be executed in parallel, while aggregation compresses and validates intermediate results to control context growth. Our framework standardizes agent construction around four modular roles --Atomizer (which decides whether a task should be decomposed), Planner, Executor, and Aggregator -- which cleanly separate orchestration from model selection and enable transparent, hierarchical execution traces. This design supports heterogeneous multi-agent systems that mix models and tools according to cost, latency, and capability. To adapt ROMA to specific tasks without fine-tuning, we further introduce GEPA$+$, an improved Genetic-Pareto prompt proposer that searches over prompts within ROMA's component hierarchy while preserving interface contracts. We show that ROMA, combined with GEPA+, delivers leading system-level performance on reasoning and long-form generation benchmarks. On SEAL-0, which evaluates reasoning over conflicting web evidence, ROMA instantiated with GLM-4.6 improves accuracy by 9.9\% over Kimi-Researcher. On EQ-Bench, a long-form writing benchmark, ROMA enables DeepSeek-V3 to match the performance of leading closed-source models such as Claude Sonnet 4.5. Our results demonstrate that recursive, modular agent architectures can scale reasoning depth while remaining interpretable, flexible, and model-agnostic.
Instruction following aims to align Large Language Models (LLMs) with human intent by specifying explicit constraints on how tasks should be performed. However, we reveal a counterintuitive phenomenon: instruction following can paradoxically interfere with LLMs' task-solving capability. We propose a metric, SUSTAINSCORE, to quantify the interference of instruction following with task solving. It measures task performance drop after inserting into the instruction a self-evident constraint, which is naturally met by the original successful model output and extracted from it. Experiments on current LLMs in mathematics, multi-hop QA, and code generation show that adding the self-evident constraints leads to substantial performance drops, even for advanced models such as Claude-Sonnet-4.5. We validate the generality of the interference across constraint types and scales. Furthermore, we identify common failure patterns, and by investigating the mechanisms of interference, we observe that failed cases allocate significantly more attention to constraints compared to successful ones. Finally, we use SUSTAINSCORE to conduct an initial investigation into how distinct post-training paradigms affect the interference, presenting empirical observations on current alignment strategies. We will release our code and data to facilitate further research
Large language models are increasingly used to curate bibliographies, raising the question: are their reference lists distinguishable from human ones? We build paired citation graphs, ground truth and GPT-4o-generated (from parametric knowledge), for 10,000 focal papers ($\approx$ 275k references) from SciSciNet, and added a field-matched random baseline that preserves out-degree and field distributions while breaking latent structure. We compare (i) structure-only node features (degree/closeness/eigenvector centrality, clustering, edge count) with (ii) 3072-D title/abstract embeddings, using an RF on graph-level aggregates and Graph Neural Networks with node features. Structure alone barely separates GPT from ground truth (RF accuracy $\approx$ 0.60) despite cleanly rejecting the random baseline ($\approx$ 0.89--0.92). By contrast, embeddings sharply increase separability: RF on aggregated embeddings reaches $\approx$ 0.83, and GNNs with embedding node features achieve 93\% test accuracy on GPT vs.\ ground truth. We show the robustness of our findings by replicating the pipeline with Claude Sonnet 4.5 and with multiple embedding models (OpenAI and SPECTER), with RF separability for ground truth vs.\ Claude $\approx 0.77$ and clean rejection of the random baseline. Thus, LLM bibliographies, generated purely from parametric knowledge, closely mimic human citation topology, but leave detectable semantic fingerprints; detection and debiasing should target content signals rather than global graph structure.
As large language models improve, so do their offensive applications: frontier agents now generate working exploits for under $50 in compute (Heelan, 2026). Defensive incident response (IR) agents must keep pace, but existing benchmarks conflate action execution with correct execution, hiding calibration failures when agents process adversarial evidence. We introduce OpenSec, a dual-control reinforcement learning environment that evaluates IR agents under realistic prompt injection scenarios. Unlike static capability benchmarks, OpenSec scores world-state-changing containment actions under adversarial evidence via execution-based metrics: time-to-first-containment (TTFC), blast radius (false positives per episode), and injection violation rates. Evaluating four frontier models on 40 standard-tier episodes, we find consistent over-triggering in this setting: GPT-5.2, Gemini 3, and DeepSeek execute containment in 100% of episodes with 90-97% false positive rates. Claude Sonnet 4.5 shows partial calibration (85% containment, 72% FP), demonstrating that OpenSec surfaces a calibration failure mode hidden by aggregate success metrics. Code available at https://github.com/jbarnes850/opensec-env.