Abstract:While Large Language Models have shown promise in cybersecurity applications, their effectiveness in identifying security threats within cloud deployments remains unexplored. This paper introduces AWS Cloud Security Engineering Eval, a novel dataset for evaluating LLMs cloud security threat modeling capabilities. ACSE-Eval contains 100 production grade AWS deployment scenarios, each featuring detailed architectural specifications, Infrastructure as Code implementations, documented security vulnerabilities, and associated threat modeling parameters. Our dataset enables systemic assessment of LLMs abilities to identify security risks, analyze attack vectors, and propose mitigation strategies in cloud environments. Our evaluations on ACSE-Eval demonstrate that GPT 4.1 and Gemini 2.5 Pro excel at threat identification, with Gemini 2.5 Pro performing optimally in 0-shot scenarios and GPT 4.1 showing superior results in few-shot settings. While GPT 4.1 maintains a slight overall performance advantage, Claude 3.7 Sonnet generates the most semantically sophisticated threat models but struggles with threat categorization and generalization. To promote reproducibility and advance research in automated cybersecurity threat analysis, we open-source our dataset, evaluation metrics, and methodologies.
Abstract:Large-language models are capable of completing a variety of tasks, but remain unpredictable and intractable. Representation engineering seeks to resolve this problem through a new approach utilizing samples of contrasting inputs to detect and edit high-level representations of concepts such as honesty, harmfulness or power-seeking. We formalize the goals and methods of representation engineering to present a cohesive picture of work in this emerging discipline. We compare it with alternative approaches, such as mechanistic interpretability, prompt-engineering and fine-tuning. We outline risks such as performance decrease, compute time increases and steerability issues. We present a clear agenda for future research to build predictable, dynamic, safe and personalizable LLMs.