Abstract:Graph Neural Networks (GNNs) have been widely adopted for Protein Representation Learning (PRL), as residue interaction networks can be naturally represented as graphs. Current GNN-based PRL methods typically rely on single-perspective graph construction strategies, which capture partial properties of residue interactions, resulting in incomplete protein representations. To address this limitation, we propose MMPG, a framework that constructs protein graphs from multiple perspectives and adaptively fuses them via Mixture of Experts (MoE) for PRL. MMPG constructs graphs from physical, chemical, and geometric perspectives to characterize different properties of residue interactions. To capture both perspective-specific features and their synergies, we develop an MoE module, which dynamically routes perspectives to specialized experts, where experts learn intrinsic features and cross-perspective interactions. We quantitatively verify that MoE automatically specializes experts in modeling distinct levels of interaction from individual representations, to pairwise inter-perspective synergies, and ultimately to a global consensus across all perspectives. Through integrating this multi-level information, MMPG produces superior protein representations and achieves advanced performance on four different downstream protein tasks.
Abstract:We introduce RFC Bench, a benchmark for evaluating large language models on financial misinformation under realistic news. RFC Bench operates at the paragraph level and captures the contextual complexity of financial news where meaning emerges from dispersed cues. The benchmark defines two complementary tasks: reference free misinformation detection and comparison based diagnosis using paired original perturbed inputs. Experiments reveal a consistent pattern: performance is substantially stronger when comparative context is available, while reference free settings expose significant weaknesses, including unstable predictions and elevated invalid outputs. These results indicate that current models struggle to maintain coherent belief states without external grounding. By highlighting this gap, RFC Bench provides a structured testbed for studying reference free reasoning and advancing more reliable financial misinformation detection in real world settings.
Abstract:We introduce FinCriticalED (Financial Critical Error Detection), a visual benchmark for evaluating OCR and vision language models on financial documents at the fact level. Financial documents contain visually dense and table heavy layouts where numerical and temporal information is tightly coupled with structure. In high stakes settings, small OCR mistakes such as sign inversion or shifted dates can lead to materially different interpretations, while traditional OCR metrics like ROUGE and edit distance capture only surface level text similarity. \ficriticaled provides 500 image-HTML pairs with expert annotated financial facts covering over seven hundred numerical and temporal facts. It introduces three key contributions. First, it establishes the first fact level evaluation benchmark for financial document understanding, shifting evaluation from lexical overlap to domain critical factual correctness. Second, all annotations are created and verified by financial experts with strict quality control over signs, magnitudes, and temporal expressions. Third, we develop an LLM-as-Judge evaluation pipeline that performs structured fact extraction and contextual verification for visually complex financial documents. We benchmark OCR systems, open source vision language models, and proprietary models on FinCriticalED. Results show that although the strongest proprietary models achieve the highest factual accuracy, substantial errors remain in visually intricate numerical and temporal contexts. Through quantitative evaluation and expert case studies, FinCriticalED provides a rigorous foundation for advancing visual factual precision in financial and other precision critical domains.
Abstract:The subject of this work is to check how different types of music affect human emotions. While listening to music, a subjective survey and brain activity measurements were carried out using an EEG helmet. The aim is to demonstrate the impact of different music genres on emotions. The research involved a diverse group of participants of different gender and musical preferences. This had the effect of capturing a wide range of emotional responses to music. After the experiment, a relationship analysis of the respondents' questionnaires with EEG signals was performed. The analysis revealed connections between emotions and observed brain activity.
Abstract:Pre-trained vision-language models (VLMs) such as CLIP have demonstrated strong zero-shot capabilities across diverse domains, yet remain highly vulnerable to adversarial perturbations that disrupt image-text alignment and compromise reliability. Existing defenses typically rely on adversarial fine-tuning with labeled data, limiting their applicability in zero-shot settings. In this work, we identify two key weaknesses of current CLIP adversarial attacks -- lack of semantic guidance and vulnerability to view variations -- collectively termed semantic and viewpoint fragility. To address these challenges, we propose Self-Calibrated Consistency (SCC), an effective test-time defense. SCC consists of two complementary modules: Semantic consistency, which leverages soft pseudo-labels from counterattack warm-up and multi-view predictions to regularize cross-modal alignment and separate the target embedding from confusable negatives; and Spatial consistency, aligning perturbed visual predictions via augmented views to stabilize inference under adversarial perturbations. Together, these modules form a plug-and-play inference strategy. Extensive experiments on 22 benchmarks under diverse attack settings show that SCC consistently improves the zero-shot robustness of CLIP while maintaining accuracy, and can be seamlessly integrated with other VLMs for further gains. These findings highlight the great potential of establishing an adversarially robust paradigm from CLIP, with implications extending to broader vision-language domains such as BioMedCLIP.




Abstract:Recent advances in quantum computing and machine learning have given rise to quantum machine learning (QML), with growing interest in learning from sequential data. Quantum recurrent models like QLSTM are promising for time-series prediction, NLP, and reinforcement learning. However, designing effective variational quantum circuits (VQCs) remains challenging and often task-specific. To address this, we propose DiffQAS-QLSTM, an end-to-end differentiable framework that optimizes both VQC parameters and architecture selection during training. Our results show that DiffQAS-QLSTM consistently outperforms handcrafted baselines, achieving lower loss across diverse test settings. This approach opens the door to scalable and adaptive quantum sequence learning.
Abstract:Despite the success of the monolithic dense paradigm of large language models (LLMs), the LoRA adapters offer an efficient solution by fine-tuning small task-specific modules and merging them with the base model. However, in multi-task settings, merging LoRA adapters trained on heterogeneous sources frequently causes \textit{task interference}, degrading downstream performance. To address this, we propose a tensorized clustered LoRA (TC-LoRA) library targeting to address the task interference at the \textit{text-level} and \textit{parameter-level}. At the \textit{text-level}, we cluster the training samples in the embedding space to capture input-format similarities, then train a specialized LoRA adapter for each cluster. At the \textit{parameter-level}, we introduce a joint Canonical Polyadic (CP) decomposition that disentangles task-specific and shared factors across LoRA adapters. This joint factorization preserves essential knowledge while reducing cross-task interference. Extensive experiments on out-of-domain zero-shot and skill-composition tasks-including reasoning, question answering, and coding. Compared to strong SVD-based baselines, TC-LoRA achieves +1.4\% accuracy on Phi-3 and +2.3\% on Mistral-7B (+2.3\%), demonstrating the effectiveness of TC-LoRA in LLM adaptation.
Abstract:This work introduces the first benchmark for nursing value alignment, consisting of five core value dimensions distilled from international nursing codes: Altruism, Human Dignity, Integrity, Justice, and Professionalism. The benchmark comprises 1,100 real-world nursing behavior instances collected through a five-month longitudinal field study across three hospitals of varying tiers. These instances are annotated by five clinical nurses and then augmented with LLM-generated counterfactuals with reversed ethic polarity. Each original case is paired with a value-aligned and a value-violating version, resulting in 2,200 labeled instances that constitute the Easy-Level dataset. To increase adversarial complexity, each instance is further transformed into a dialogue-based format that embeds contextual cues and subtle misleading signals, yielding a Hard-Level dataset. We evaluate 23 state-of-the-art (SoTA) LLMs on their alignment with nursing values. Our findings reveal three key insights: (1) DeepSeek-V3 achieves the highest performance on the Easy-Level dataset (94.55), where Claude 3.5 Sonnet outperforms other models on the Hard-Level dataset (89.43), significantly surpassing the medical LLMs; (2) Justice is consistently the most difficult nursing value dimension to evaluate; and (3) in-context learning significantly improves alignment. This work aims to provide a foundation for value-sensitive LLMs development in clinical settings. The dataset and the code are available at https://huggingface.co/datasets/Ben012345/NurValues.
Abstract:Few-shot point cloud semantic segmentation aims to accurately segment "unseen" new categories in point cloud scenes using limited labeled data. However, pretraining-based methods not only introduce excessive time overhead but also overlook the local structure representation among irregular point clouds. To address these issues, we propose a pretraining-free local structure fitting network for few-shot point cloud semantic segmentation, named TaylorSeg. Specifically, inspired by Taylor series, we treat the local structure representation of irregular point clouds as a polynomial fitting problem and propose a novel local structure fitting convolution, called TaylorConv. This convolution learns the low-order basic information and high-order refined information of point clouds from explicit encoding of local geometric structures. Then, using TaylorConv as the basic component, we construct two variants of TaylorSeg: a non-parametric TaylorSeg-NN and a parametric TaylorSeg-PN. The former can achieve performance comparable to existing parametric models without pretraining. For the latter, we equip it with an Adaptive Push-Pull (APP) module to mitigate the feature distribution differences between the query set and the support set. Extensive experiments validate the effectiveness of the proposed method. Notably, under the 2-way 1-shot setting, TaylorSeg-PN achieves improvements of +2.28% and +4.37% mIoU on the S3DIS and ScanNet datasets respectively, compared to the previous state-of-the-art methods. Our code is available at https://github.com/changshuowang/TaylorSeg.




Abstract:Large Language Models (LLMs), such as ChatGPT, Phi3 and Llama-3, are leading a significant leap in AI, as they can generalize knowledge from their training to new tasks without fine-tuning. However, their application in the financial domain remains relatively limited. The financial field is inherently complex, requiring a deep understanding across various perspectives, from macro, micro economic trend to quantitative analysis. Motivated by this complexity, a mixture of expert LLMs tailored to specific financial domains could offer a more comprehensive understanding for intricate financial tasks. In this paper, we present the FinTeamExperts, a role-specialized LLM framework structured as a Mixture of Experts (MOEs) for financial analysis. The framework simulates a collaborative team setting by training each model to specialize in distinct roles: Macro Analysts, Micro analysts, and Quantitative Analysts. This role-specific specialization enhances the model's ability to integrate their domain-specific expertise. We achieve this by training three 8-billion parameter models on different corpus, each dedicated to excelling in specific finance-related roles. We then instruct-tune FinTeamExperts on downstream tasks to align with practical financial tasks. The experimental results show that FinTeamExperts outperform all models of the same size and larger on three out of four datasets. On the fourth dataset, which presents a more complex task, FinTeamExperts still surpass all models of the same size. This highlights the success of our role-based specialization approach and the continued training approach for FinTeamExperts.